
Departamento de Ingenieŕıa Telemática

TRABAJO FIN DE GRADO

Development of a virtual
reality environment to study
psychomotor skills in children

Autor: Raúl Araújo Álvarez

Tutora: Ma del Carmen Fernández Panadero

Madrid, Junio 2015

ii

Acknowledgments

To my family, specially my parents for their unconditional support in any situ-
ation.

To my friends for being always there and giving me a hand whenever I needed it.

To my tutor Ma Carmen for her invaluable guidance and effort to make this
project possible.

And finally to Rafa for adding magic to this technical project.

iii

0. Acknowledgments

iv

Abstract

Even though Virtual Reality is not a new technology, it is experiencing a re-
naissance and expansion to different fields with a great potential due to the de-
velopment of new devices. This fact in addition to the interest that videogames
awake in children, motivated the development of this project: a system that
could take advantage of the current rise of Virtual Reality for its use as an ed-
ucational tool without letting the fun factor out of the equation.

More specifically we designed and developed a set of three Virtual Reality games
for children to exercise their psycho-motor skills: The first one allows the player
to become a Pegasus, the second lets him take the reins of this Pegasus to go
for a ride and in the third one the player becomes an elf who has to face a
sword training session. These games are based on a fantasy novel which served
a double purpose: making the system more appealing and, more importantly,
promoting reading habits in children.

Since one of the requirements that we set was not to use traditional input
methods, we carried out an analysis of the current technologies used for motion
tracking. The conclusion was that we should partially develop a custom solution
to keep simplicity and budget low.

The finally developed system was successfully tested in a primary school with
a group of children of 8 to 9 years of age. After embodying different characters
from the story, they showed an increase of interest for them, their adventures
and thus for reading the book.

Keywords: Virtual Reality, psycho-motor, embodiment, skills, game, simu-
lation, Oculus Rift, Kinect, Android, bluetooth, Windows, Unity, Blender, 3D,
.NET, C#, Java, fantasy, children, book, reading

v

0. Abstract

vi

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Project History . 2
1.2 Project Motivation . 3
1.3 Project Objectives . 3

1.3.1 Functional Objectives . 3
1.3.2 Technical Objectives . 4

1.4 Document Structure . 5

2 Problem Analysis and Alternatives 7
2.1 State of the Art . 7

2.1.1 Sensor Technologies . 8
2.1.2 Overview of Commercial Devices 8

2.2 State of the Art Conclusions . 14
2.3 System Requirements . 16

2.3.1 Functional Requirements 16
2.3.2 Non-functional Requirements 19
2.3.3 Objectives vs. Requirements 21

2.4 Legal and Regulation Aspects . 22
2.5 Tools and Technologies Used . 23

2.5.1 Software . 23
2.5.2 Hardware . 26

3 Design and Implementation 29
3.1 System Architecture and Specifications 29
3.2 Bluetooth Subsystem Development 31

3.2.1 Development of the Bluetooth Client Application 31
3.2.2 Development of the Bluetooth Proxy Application 31

3.3 Game Development . 34
3.3.1 Sword Training . 34
3.3.2 Pegasus Flight . 45
3.3.3 Pegasus Ride . 54

3.4 Summary of Art Assets . 59
3.4.1 Environment . 59
3.4.2 Characters . 60

vii

Contents Contents

4 Results and Evaluation 61

4.1 Development Tests . 61

4.2 Development Validation . 63

4.3 Final Validation . 64

5 Project Management and Planning 67

5.1 Project Time Plan . 67

5.2 Budget Considerations . 70

5.2.1 Staff Costs . 70

5.2.2 Software License Costs . 71

5.2.3 Equipment Costs . 71

5.2.4 Total Cost Summary . 74

6 Conclusions 75

6.1 Review of the Project Objectives 75

6.2 Development and Test Conclusions 76

6.3 Personal Conclusions . 76

7 Future Development 77

A Extended Abstract 79

A.1 Introduction and Project History 79

A.2 Summary of the Project Objectives 80

A.2.1 Functional Objectives . 80

A.2.2 Technical Objectives . 80

A.3 State of the Art and Implementation Process 80

A.4 Conclusions . 81

A.4.1 Development and Test Conclusions 81

A.4.2 Validation of the Project Objectives 81

A.4.3 Technical Conclusions . 81

A.5 Personal Conclusions . 82

A.6 Future Development . 82

B User Manual 85

B.1 System Requirements . 85

B.1.1 Third Party Software . 85

B.2 First Time Configuration . 86

B.2.1 Android Application Installation 86

B.2.2 Computer and Phone Bluetooth Pairing 86

B.2.3 Game Installation . 88

B.3 Playing the Games . 88

B.3.1 General Controls . 88

B.3.2 Sword Training Controls 89

B.3.3 Pegasus Flight Controls 89

B.3.4 Pegasus Ride Controls . 91

viii

Contents Contents

C Developer Manual 93
C.1 System and Software Requirements 93
C.2 Modifying the Sword Training Game 93

C.2.1 Adjusting the Cannon Parameters 93
C.2.2 Adjusting General Parameters 94

C.3 Modifying Pegasus Flight and Ride Games 95
C.3.1 Modifying or Creating a New Circuit 95
C.3.2 Adjusting General Parameters 96

D Image rights agreement document 97

Acronyms 99

Bibliography 101

ix

Contents Contents

x

List of Figures

1.1 ”El Secreto de Marcos” book cover. 2

2.1 Leap Motion . 9
2.2 Kinect and Xtion . 9
2.3 Wii Remote . 10
2.4 PlayStation Move . 10
2.5 Razer Hydra . 11
2.6 STEM controllers . 12
2.7 PiroVR . 12
2.8 ControlVR . 13
2.9 Objectives vs Requirements table. 21
2.10 A screenshot of the Unity Editor window. 23
2.11 A screenshot of Blender 3D workspace. 24
2.12 A screenshot of the Photoshop workspace. 25
2.13 A screenshot of Visual Studio Community Edition. 25
2.14 A screenshot of Android Studio IDE. 26
2.15 The Oculus Rift DK1 . 27

3.1 Hardware and software system architecture overview. 29
3.2 Unity scripts overview . 30
3.3 Bluetooth code overview . 31
3.4 BT IMU Android Application . 32
3.5 Bluetooth Proxy Application . 33
3.6 Sword Training and medals . 35
3.7 Global game state diagram for Sword Training 36
3.8 Sword Training scene . 37
3.9 Colored back-faces shader . 43
3.10 Pegasus Flight as seen from player’s perspective 45
3.11 Circuit for Pegasus Flight. 46
3.12 Global game state diagram for Pegasus Flight 47
3.13 Pegasus Flight scene . 47
3.14 Calculation of animation time from arm rotation. 51
3.15 Settings for the ImpulseMotor script. 53
3.16 Pegasus Ride perspective . 54
3.17 Circuit for Pegasus Ride. 55
3.18 Global game state diagram for Pegasus Ride. 56
3.19 Pegasus Ride scene . 56
3.20 AvatarController script options 57

xi

List of Figures List of Figures

3.21 Modified horse model . 60

4.1 Wireless IMU application . 62
4.2 Volunteers testing the system in the lab. 63
4.3 Drawings and clay characters . 64
4.4 Children testing the system . 65

5.1 Task list for the project . 68
5.2 Gantt diagram of the project with the critical tasks grayed out. . 69

B.1 Install from unknown sources . 86
B.2 Android pin confirmation. 87
B.3 Windows 8 connection request. 87
B.4 Windows 8 pin confirmation. 87
B.5 Game directory . 88
B.6 Sword Training calibration screen. 89
B.7 Smartphone calibration . 90
B.8 Pegasus Flight calibration screen. 90
B.9 Pegasus Ride calibration screen. 91

C.1 Cannon configuration . 94
C.2 SwordGameManager exposed parameters. 94
C.3 Waypoint configuration . 95
C.4 Possible way point connection issues. 96
C.5 FlightGameManager configuration 96

xii

List of Tables

2.1 Summary of tracking devices. 15
2.2 Functional Requirement FR-01. 16
2.3 Functional Requirement FR-02. 16
2.4 Functional Requirement FR-03. 17
2.5 Functional Requirement FR-04. 17
2.6 Functional Requirement FR-05. 17
2.7 Functional Requirement FR-06. 18
2.8 Functional Requirement FR-07. 18
2.9 Functional Requirement FR-08. 18
2.10 Non-functional Requirement NFR-01. 19
2.11 Non-functional Requirement NFR-02. 19
2.12 Non-functional Requirement NFR-03. 20
2.13 Non-functional Requirement NFR-04. 21

3.1 3D models and packages used for the environment design. 59
3.2 3D Character models used. 60

5.1 Estimated personnel costs for the project developer. 70
5.2 Estimated personnel costs for the project tutor. 71
5.3 Software license costs. 72
5.4 Estimated equipment costs. 73
5.5 Summary of the total project costs. 74

xiii

List of Tables List of Tables

xiv

Chapter 1

Introduction

Since its early beginnings, Virtual Reality (VR) has been a technology with
an enormous potential due to its inherent three-dimensional structure, both
in terms of display and interaction. According to Bryson [1], the vision of a
three-dimensional environment applied to three-dimensional tasks and of highly
intuitive interfaces which make the computer hardware ”invisible” seems to be
an entirely reasonable and desirable vision.

However, the adoption of Virtual Reality (VR) has been neither as fast
nor as extensive as expected at the beginning. There could be a variety of
reasons for this failure, but one of the most important was that the available
interface hardware (Head-mounted Display (HMD), trackers, etc.) during the
first decades failed to deliver the effects of immersion or presence required for
many tasks mainly due to performance issues.

Recent advances in stereoscopic displays such as VR glasses (e.g: Oculus
Rift, Samsung Gear) and other consumer devices available on the mass market
such as hand-held terminals (smartphones, tablets), and game platforms (Wii,
PlayStation) makes the technology of sensors and trackers much more affordable
for the users. This fact has allowed virtual reality to emerge from the simula-
tion field to a wider range of different applications such as manufacturing [2],
neuropsychology [3] ,rehabilitation [4], [5] and for leisure (games, films) [6].

Additionally, the relationships between body, mind and emotions have been
widely exploited in high level sports and dance performance, but its penetration
in academic environments is still very slow [7]. The theory of multiple intelli-
gences by Gardner [8], the growing interest in embodied cognition [9] and studies
supporting the connection between motor activity and brain neuroplasticity [4],
[10] have once again drawn attention to the potential of body-mind-emotions
connections in learning environments.

Taking advantage of these two tendencies and the fact that several authors
have highlighted the potential of VR to provide a multi-sensory learning feed-
back, the main objective of this project is to assess the integration possibilities
of the current commercial devices and develop a prototype that consists of a set
of simple games, which involve physical activity and explore different ways of
interaction with the virtual world. Finally it would be necessary to tests these
games in a primary school with children in order to explore their reactions and
impressions.

Presenting the idea of this activity in a school before starting the actual

1

1.1. Project History 1. Introduction

development allowed to redefine the initial objectives for a better integration
of the games within the activities carried out there as well as a more practical
application.

In this chapter we describe how this project started and how its initial con-
ception evolved to the final idea. This evolution had an effect in the project
objectives and motivation as we will explain.

A brief overview of this document is presented as well.

1.1 Project History

The starting point for this project was the idea of researching and implementing
new ways for user interaction inside Virtual Reality (VR) environments. Then
creating some simple demos, with a videogame format, to test our work with
final users so we could study their reactions and feedback.

For our testing scenario we contacted a primary school which happened to be
carrying out activities to develop multiple intelligence in children. At this point
we realized our project could fit as a part of this set of activities if we modified
our initial objectives and requirements (as explained in the next section) an so
we did.

This way we could integrate our project with the curricular activities pro-
grammed for the children’s education as established by ”Real Decreto 89” which
regulates the educative contents in Comunidad de Madrid. Specially, article 10
makes reference to ”playing the role of different characters from tales and sto-
ries” [11].

Figure 1.1: ”El Secreto de Marcos” book cover.

These activities were based on a fantasy novel for children titled ”El Secreto

2

1.2. Project Motivation 1. Introduction

de Marcos”[12]. So it seemed a good idea to adapt our project visual and artistic
style to the one described in the book. We contacted the author, Rafael Nieto,
to learn more about this fantasy world and discuss some of the artistic aspects.
We thought that the fact of basing the game on a book could help promoting
children’s reading as well.

So the relatively simple initial idea of a demo, developed into creating a VR
experience set in a fantasy world and then testing it with children as a part of
their school activities.

1.2 Project Motivation

When children finish their second year of primary school education (between 8
and 9 years of age) they should have acquired the habit of reading since they just
learned to do so. Unfortunately, kids at that age do not find books attractive
since there are plenty of ways of entertainment that are more dynamic and
immediate such as television or videogames.

In the last decades, several attempts have been made to transport literature
into virtual reality [13], [14], in these cases the idea is to recreate traditional
literary narratives inside the virtual world. The usual method is to recreate
the atmosphere and deconstruct the text so that the reader can be immerse in
the environment and play a more active and closer to the game role, enabling
interaction with different elements and giving some degree of freedom to make
plot choices.

In our case the approach taken is different, we do not want to develop a
new way to present the book as a whole. We want to develop an activity that
encourages the children to read the book in its traditional format. Our approach
is based on the fact that, by embodying some of the characters, the children
will be much more interested in knowing about them and their adventures and
so they will be more curious about the book.

1.3 Project Objectives

Once we had contacted the school and the author of the book, we had all the
necessary information to define the following objectives:

1.3.1 Functional Objectives

• FO-01: Create a VR experience, in the form of a game, which
produces a sense of embodiment being intense, immersive and
fun. Since the main users will be kids we want to create the feeling of
really being transported to a magical world and embodying the different
characters with the final goal of waking their curiosity about the book.

• FO-02: The game atmosphere, locations and characters have to
be based on the novel ”El Secreto de Marcos”. As we mentioned
before, our project will be integrated into the set of activities that the
school was carrying out so it has to fit within the global theme of these
activities.

3

1.3. Project Objectives 1. Introduction

• FO-03: Testing the game with final users and gathering their
feedback, reactions and opinions. For us, one of the most important
objectives is being able of actually testing the results of our work and
check that it is useful in some way. Testing with final users is also the
most effective way to improve our work.

1.3.2 Technical Objectives

• TO-01: Develop one experience where the user controls the
avatar using his body. The player must take control of a non hu-
man character, but his body movements must be closely mapped to this
character.

• TO-02: Develop one experience where a physical object is used
to interact with the virtual world. Using a physical, real world object
(but not a traditional game-pad or controller), the player will control some
element inside the virtual world.

• TO-03: Develop a system that is easy to setup. The project is
intended to be tested with a high number of children in a relatively small
time lapse, so we want short setup and configuration times between users.
This implies to use as few cables as possible and quick calibration phase.

• TO-04: Develop a system that is affordable. Since we will be work-
ing with children we want to create a fun experience that requires only
affordable consumer grade technology so that we don’t have to worry too
much about the equipment in case of it breaking down. We also wanted
to keep the budget as low as possible.

4

1.4. Document Structure 1. Introduction

1.4 Document Structure

In order to make the reading of this document easier a short description of each
chapter is presented.

• Chapter 1: An introduction to the whole project, a description of its
objectives and legal considerations involved.

• Chapter 2: An analysis of the current state of the art in VR control
systems and the possible alternatives to use in the project.

• Chapter 3: The actual software and hardware architecture, design and
implementation details using Unity3D and C# are described.

• Chapter 4: A description of all the tests performed as well as the results
obtained.

• Chapter 5: How the project was planned in time as well as budget
considerations.

• Chapter 6: Final conclusion words.

• Chapter 7: Description of ideas for future development using the ac-
quired experience.

5

1.4. Document Structure 1. Introduction

6

Chapter 2

Problem Analysis and
Alternatives

With the introduction of VR we face new challenges for providing user interac-
tion. While traditional input methods can work they are not ideal for a really
immersive and comfortable experience. Some of the problems that might arise
are:

• Since the user’s vision is completely immersed in the virtual world, he or
she is unable to see the actual input device so devices with a high number
of buttons or keys can be difficult to get used to.See [15] on page 6.

• If not done carefully, the use of traditional input methods to control the
virtual avatar can induce simulator sickness due to conflicts between the
visual and bodily senses.

Although the user will develop resistance to simulator sickness just by experi-
ence, this disparity between real and virtual world can diminish the sense of
immersion. See Appendix G: Simulator Sickness of [15].

However most of current technologies, with some exceptions that will be dis-
cussed later in this chapter, are focused purely on vision immersion. Although
vision is the main pillar to create immersion, we should look for new control
devices that will provide the user with ways to interact with the virtual environ-
ment without breaking the immersion and at the same time are intuitive and
natural to use.

Since in our case the choice of the device used for vision (Oculus Rift) was
constrained by the available resources, this state of the art analysis will focus
on other devices that can be used for interaction.

2.1 State of the Art

In this section we focus on the analysis of tracking systems that require the use
of psycho-motor skills or physical activity.

Current alternative input methods and control devices can be classified ac-
cording the type of sensor technologies used. Some solutions use a mix of differ-

7

2.1. State of the Art 2. Problem Analysis and Alternatives

ent sensors as it will be described see in this chapter. We will first take a look
at these technologies and then review some of the most relevant devices.

2.1.1 Sensor Technologies

The main groups of sensor technologies widely used for tracking are:

Inertial Sensors

• Accelerometer An accelerometer measures accelerations. This is useful
to measure changes in velocity (directly, as the acceleration is the first
time derivative of the velocity) and changes in position (by integrating
the signal). They are usually used for measuring small movements. Also
note that gravity acts like a continuous acceleration upward (via Einstein’s
equivalence principle), so a multiple-axis accelerometer can also be used
as an absolute orientation sensor in the UP-DOWN plane.

• Gyroscope A gyroscope measures either changes in orientation (called
regular or integrating rate gyroscope) or changes in rotational velocity
(rate gyroscope).

A common setup consisting of a combination of these two types of sensors
(usually including a magnetometer as well) is called Inertial Measurement
Unit (IMU) which is able to measure velocity, orientation and gravitational
forces as vectors in a single device.

Magnetic Sensors

• Magnetometer: It is a kind of sensor that measures magnetic fields.
Since the earth has a significant magnetic field magnetometers can be
used as a compass to provide absolute orientation on the earth’s surface.
Another possible use is to have a magnetic reference different from earth’s
north such as an external coil that is placed in a known location [16].

Optical Sensors

Optical sensors for motion tracking typically make use of one or more RGB cam-
eras, infrared emitters and sensors or a combination of all and rely on software
algorithms to extract the relevant tracking information from image data. Some
optical solutions based on cameras require external markers in the objects be-
ing tracked. These markers can be passive (reflective surfaces) or active (special
light sources).

2.1.2 Overview of Commercial Devices

After researching what kind of sensors the commercial devices usually incorpo-
rate we proceeded to analyze the most popular ones.

8

2.1. State of the Art 2. Problem Analysis and Alternatives

Leap Motion

Released in 2014, the Leap Motion hardware features three infrared LEDs and
two infrared cameras that provide raw sensor data to the computer. This data
is then processed by the software to recreate a 3D representation of what the
device sees and extract data about tracked hands or tools from it.

Figure 2.1: Leap Motion and a diagram of the user interaction area.
Source: http://amazon.com and http://blog.leapmotion.com

Microsoft Kinect / Asus Xtion

The first version of Kinect was launched in 2010. It features and infrared pro-
jector which projects a grid dot pattern in the scene. The dot pattern is unique
in each grid cell allowing the software to individually identify them and using
a triangulation algorithm determining the depth of each one. A depth map is
constructed from this information so that tracking data can be extracted from
it. With this configuration Kinect allows for full body tracking of up to two
users. However the heavy calculations that it has to perform and the refresh
rate of the optical sensors introduces a high latency, ranging between 100ms
and 500ms in the worst cases [17]. Precision is low too since certain lighting
conditions have to be met like no sun light shining directly onto the scene.

The differences between Kinect and Xtion are mainly in software and drivers
compatibility being Microsof’s device more popular and better supported.

Figure 2.2: From right to left: Kinect and Xtion devices. Projected IR dot
patter. Depth map constructed from the dot pattern.
Source: http://asus.com and http://en.wikipedia.org/

9

http://amazon.com
http://blog.leapmotion.com
http://asus.com
http://en.wikipedia.org/

2.1. State of the Art 2. Problem Analysis and Alternatives

Wii Remote

Released in 2006, the Wii Remote features a combination of two sensor technolo-
gies. It uses a three axis accelerometer to detect forces applied to it as well as
rotations in the X and Z axes. Additionally it is equipped with an infrared low
resolution camera that keeps track of the position of two external infrared LEDs
used as a reference. This setup allows to determine where exactly the WiiMote
is pointing at with the limitation imposed by the fact that a line of sight must
exist between the device and the external LEDs. In 2009 Wii MotionPlus was
launched as an accessory for the Wii Remote which added two axis gyroscope
to increase the accuracy and provide Y axis rotation data.

Figure 2.3: The Wii Remote coordinate system and a triangulation diagram
using the external IR LEDs.
Source: http://www.embedded.com/ and http://wiiphysics.site88.net/

PlayStation Move

PlatStation Move was launched in 2010 and like the Wii Remote, this device
combines optical and inertial sensor technologies. First it features a glowing orb
that is tracked by an external camera (PlayStation Eye) providing position data
(including depth). For orientation tracking it relies on a three axis accelerome-
ter, a two axis gyroscope and a magnetometer to help with calibration by using
the earth’s magnetic field as a reference.

Figure 2.4: PlayStation Move on the left and Playstation Eye on the right.
Source: http://us.playstation.com/ and http://en.wikipedia.org/

Razer Hydra

The Razer Hydra was released to the market in 2011 and features two controllers
(one for each hand) and an external base station. This external hardware has

10

http://www.embedded.com/
http://wiiphysics.site88.net/
http://us.playstation.com/
http://en.wikipedia.org/

2.1. State of the Art 2. Problem Analysis and Alternatives

three coils oriented along the three different axis that are powered in an al-
ternating fashion, thus producing magnetic fields oriented differently that are
then sensed by the two controllers thanks to a three axis magnetometer[18].
With this setup it is possible to determine both orientation and distance to the
external base for each controller.

Figure 2.5: Razer Hydra controllers and external base station.
Source: http://www.razerone.com/

Sixense STEM System

Sixense is the company behind the magnetic technology used for Razer Hydra
and they developed the STEM System as an improved version which is expected
for July 2015. They both work under the same principle but the STEM reduces
latency by activating all the coils at once instead of sequentially which allows
for a faster sampling rate in the sensor side. Another improvement is that the
coils in the base station are bigger so the range and precision of the device is
extended. The mentioned latency reduction allowed Sixense to make the whole
system wireless[18]. Optionally, additional sensor modules can be attached to
different parts of the body.

PiroVR

Supposedly to be launched in spring 2015, PiroVR is a full body tracking so-
lution based purely on inertial sensors (accelerometers and gyroscopes) placed
in different key parts of the body. It also includes two joysticks for additional
input. The system is connected via wireless to the computer, however wiring is
required around the user’s body.

ControlVR

Shipping to costumers of this device is expected for the second quarter of 2015
and, similarly to PiroVR, it relies on several inertial sensor placed in key body
parts. However ControlVR does not provide full body tracking, instead it aims

11

http://www.razerone.com/

2.1. State of the Art 2. Problem Analysis and Alternatives

Figure 2.6: STEM controllers, external base station and three sensor modules.
Source: http://store.sixense.com/

Figure 2.7: An overview of the different versions of PiroVR.
Source: http://www.priovr.com/

to track the user’s hands and torso as well as both hands with individual fingers
by using gloves equipped with additional inertial sensors.

12

http://store.sixense.com/
http://www.priovr.com/

2.1. State of the Art 2. Problem Analysis and Alternatives

Figure 2.8: ControlVR system and a closeup of one of the gloves featuring
inertial sensors.
Source: http://controlvr.com/ and http://vrlife.de/

13

http://controlvr.com/
http://vrlife.de/

2.2. State of the Art Conclusions 2. Problem Analysis and Alternatives

2.2 State of the Art Conclusions

In order to make the device choice easier, a summary of the state of the art
conclusions drawn from the analysis is shown in the form of a comparison table
in 2.1. It summarizes the features that we considered more relevant for our
project needs.

After reviewing all the different technologies and devices, some of them such
as the Sixense STEM, ControlVR and PiroVR had to be immediately discarded
due to the high cost, low availability and potentially long setup time caused by
the amount of wiring and straps they require. This lets us with Kinect as the
only real option for full body tracking which was our final choice.

For our requirement of manipulating a physical object to control a virtual
world element, we had now to choose between PS Move, Wii Remote or Razer
Hydra. The latter has a price too high for our budget so we ruled it out.
Since we already have to use an external camera (Kinect) the PS Move option,
requiring an additional external camera as well, involved too many peripherals
and potential malfunctions caused by interference between both of them so we
left this device out of the equation as well.

At this point we started performing some tests with the Wii Remote. During
these tests, and despite not being included in our previous analysis since we did
not consider it an intended motion tracking device, we had the idea of trying
a smartphone as the control device getting advantage of its capabilities as an
. These testing and conclusion processes are explained in more detail in the
testing section 4.1.

So after all this analysis and testing process, we concluded that our inter-
action system would consist of Kinect for full body tracking and an Android
smartphone for our physical control element.

14

2.2. State of the Art Conclusions 2. Problem Analysis and Alternatives

Name Tracking Sensor Tech.
Availabil-
ity and
price

Pros / Cons

Kinect /
Xtion

Full body
RGB and IR
cameras

In the
market.
69.99AC

+Low price
+Easy to use
-Low precision
-High latency

Leap Motion
Hands and
fingers

IR cameras
In the
market.
89.99AC

+Low price
+Easy to obtain
+Easy to use
-Limited range

Wii Remote
One hand
orientation

IR cameras
In the
market.
54.19AC

+Affordable
+Easy to use
+Low precision
-External LEDs

PS Move
One hand
position and
orientation

RGB camera
and IMU

In the
market.
49.95AC

+Affordable
+Easy to use
+Latency
-External
camera

Razer Hydra
Both hands
position and
rotation

Magnetic
In the
market.
From 470AC

+Low latency
+High precision
-High price
-Low range

Sixense
STEM

Hands, feet
and torso
position and
rotation

Magnetic
Q3 2015.
From 266AC

+Low latency
+High precision
+Price -Low
range

PiroVR Full body
Multiple IMU
and joysticks

Spring 2015.
From 260AC

+Low latency
+High precision
+Price
-Complex setup

ControlVR
Torso, arms,
hands and
fingers

Multiple IMUs
Q2 2015.
From 535AC

+Low latency
+High precision
+Price
-Complex setup

Table 2.1: Summary of tracking devices.

15

2.3. System Requirements 2. Problem Analysis and Alternatives

2.3 System Requirements

The purpose of this section is to enumerate and describe the different functional
and non-functional requirements as well as the relationship between them an
the previously defined project objectives.

2.3.1 Functional Requirements

Identifier FR-01

Name Kinect to avatar mapping

Description The system shall reproduce, closely and with
low latency, the user movements captured by
Kinect in the virtual world character.

Type Mandatory

Related Objectives FO-01, TO-01

Table 2.2: Functional Requirement FR-01.

Identifier FR-02

Name Smartphone to object mapping

Description The system shall reproduce, closely and with
low latency, the smartphone orientation changes
captured in a virtual world object.

Type Mandatory

Related Objectives FO-02, TO-02

Table 2.3: Functional Requirement FR-02.

16

2.3. System Requirements 2. Problem Analysis and Alternatives

Identifier FR-03

Name Smartphone to computer link

Description The system shall provide a way for the smart-
phone to send sensor data to the computer in
real time and without using cables.

Type Mandatory

Related Objectives TO-02, TO-03, TO-04

Table 2.4: Functional Requirement FR-03.

Identifier FR-04

Name Oculus Rift visualization

Description The system shall integrate the Oculus Rift de-
vice for 3D visualization.

Type Mandatory

Related Objectives FO-01

Table 2.5: Functional Requirement FR-04.

Identifier FR-05

Name Aural feedback

Description When performing important actions or an im-
portant event occurs, the system shall play a
characteristic sound to provide additional feed-
back on the actions of the user.

Type Mandatory

Related Objectives FO-01

Table 2.6: Functional Requirement FR-05.

17

2.3. System Requirements 2. Problem Analysis and Alternatives

Identifier FR-06

Name Choice of hand

Description When manipulating an object is required, the
system shall allow the user to choice which hand
to use for this task so that the system supports
left-handed and right-handed users.

Type Mandatory

Related Objectives TO-02

Table 2.7: Functional Requirement FR-06.

Identifier FR-07

Name Calibration phase

Description The system shall provide a calibration phase
for the user to calibrate the devices and adjust
them to his features such as height.

Type Mandatory

Related Objectives TO-01, TO-02, TO-03

Table 2.8: Functional Requirement FR-07.

Identifier FR-08

Name Performance information

Description At the end of a game, the system shall inform
the user about his performance.

Type Mandatory

Related Objectives FO-01, FO-03

Table 2.9: Functional Requirement FR-08.

18

2.3. System Requirements 2. Problem Analysis and Alternatives

2.3.2 Non-functional Requirements

Identifier NFR-01

Name Intuitive interaction

Description The system shall provide an intuitive and nat-
ural way of interaction for the user.

Type Mandatory

Related Objectives FO-01, TO-03

Table 2.10: Non-functional Requirement NFR-01.

Identifier NFR-02

Name Game atmosphere

Description The game theme shall be set in a fantastic me-
dieval environment.

Type Mandatory

Related Objectives FO-01, FO-02, FO-03

Table 2.11: Non-functional Requirement NFR-02.

19

2.3. System Requirements 2. Problem Analysis and Alternatives

Identifier NFR-03

Name Attractive visuals

Description The system shall provide attractive visuals and
a coherent art style to catch the children’s at-
tention.

Type Mandatory

Related Objectives FO-01, FO-02

Table 2.12: Non-functional Requirement NFR-03.

20

2.3. System Requirements 2. Problem Analysis and Alternatives

Identifier NFR-04

Name Calibration and setup time

Description The system setup and calibration times shall be
lower than one minute per user.

Type Mandatory

Related Objectives FO-03, TO-03

Table 2.13: Non-functional Requirement NFR-04.

2.3.3 Objectives vs. Requirements

The following table (figure 2.9) shows the relationship between the previous
requirements and the objectives set in the first chapter.

Figure 2.9: Objectives vs Requirements table.

21

2.4. Legal and Regulation Aspects 2. Problem Analysis and Alternatives

2.4 Legal and Regulation Aspects

Once the functional and technical objectives for our project have been set, it
is also necessary to analyze the restrictions that apply to our system from the
legal perspective.

There are two major areas in the project that require especial attention
about legislation and regulation. The main one has to do with the fact that we
were working with children and during the testing phase we had to record video
and audio footage of them using our system. Since the image rights of children
are specially protected by law, we asked the parents to sign an authorization
document to avoid possible conflicts. A template of this agreement document
can be found in annex D.

The second aspect concerning legal matters is about the licenses of the used
artistic assets (listed in section 3.4). The used assets come from either the Unity
Asset Store [19] or Open Game Art [20] website.

The Unity Asset Store provides an End User License Agreement (EULA)
that grants the right to use, modify and redistribute the assets if they are
bundled inside an application (section 2.2) :

Licensor grants to the END-USER a non-exclusive, worldwide,
and perpetual license to the Asset to integrate Assets only as in-
corporated and embedded components of electronic games and in-
teractive media and distribute such electronic game and interactive
media. Except for game services software development kits (Services
SDKs), END-USERS may modify Assets. END-USER may other-
wise not reproduce, distribute, sublicense, rent, lease or lend the
Assets. It is emphasized that the END-USERS shall not be entitled
to distribute or transfer in any way (including, without, limitation
by way of sublicense) the Assets in any other way than as integrated
components of electronic games and interactive media. Without lim-
itation of the foregoing it is emphasized that END-USER shall not
be entitled to share the costs related to purchasing an Asset and
then let any third party that has contributed to such purchase use
such Asset (forum pooling).

As for Open Game Art website, there is not a unified license, instead each
individual asset can have a different license set by the author. In our case all the
used assets feature a Creative Commons Zero (CC0) license which, as specified
in the Creative Commons website grants all the rights to the end user [21]:

You can copy, modify, distribute and perform the work, even for
commercial purposes, all without asking permission.

22

2.5. Tools and Technologies Used 2. Problem Analysis and Alternatives

2.5 Tools and Technologies Used

Once we had performed the state of the art analysis and tests to choose the
most appropriate technologies for interaction and the system requirements were
defined, we chose our development tools. In this section we describe these
different technologies (hardware and software) and tools used to develop our
project.

2.5.1 Software

The choice of these specific tools is motivated mainly by the familiarity with
them and relatively low (or null) cost.

Unity 3D

Unity 3D is a game engine created by Unity Technologies, it provides great mul-
tiplatform capabilities allowing to develop videogames for all major computer
operative systems (Windows, OS X and Linux), videogame consoles (Xbox One
and PlayStation 4) and mobile devices (Android, iOS and Windows Phone) as
well as web browser thanks to the WebGL technology included in Unity 5.

All the engine features (rendering, audio, animation, physics...) can be ac-
cessed by custom scripts thanks to the Mono runtime implementation. These
scripts can be written in C#, JavaScript or Boo programming languages. There
is extensive and in-depth documentation for this languages and Application Pro-
gramming Interface (API) features available for free in the Unity website.

The free version of the engine implements almost the same features than
the Pro version with the exception of (among others) post-processing effects,
deferred rendering or the ability to use native plugins.

Figure 2.10: A screenshot of the Unity Editor window.

The Unity engine is in constant and quick development. In fact during the
final stages of this project the version 5.1.1 was released implementing full native
support for virtual reality devices such as Oculus Rift and GearVR without
requiring external plugins.

23

2.5. Tools and Technologies Used 2. Problem Analysis and Alternatives

For this project we used Unity Free version 4.6.4f1 as the core of our sys-
tem. This game engine is responsible for integrating the visuals (3D models,
animations, effects...), audio, game logic and collecting the user input.

Blender 3D

Blender 3D is an open-source and free 3D modeling and animation software.
It is currently maintained by the non-profit organization Blender Foundation
and it is widely used for creating animated films, visual effects and video games
among others.

Figure 2.11: A screenshot of Blender 3D workspace.

We used Blender 2.74 throughout this project to adapt some existing 3D
models, modeling and texturing some of them from scratch (such as the cannon
in figure 2.11) and animating.

Photoshop

Photoshop is an image editing software developed by Adobe Systems Incorpo-
rated. Although it is mainly used for edition it can also be a great tool for
creating textures, 2D animations, sprites, graphical interface elements or parti-
cles. For this project we used Adobe Photoshop CS5 mainly to create some of
the game textures.

Visual Studio

Visual Studio is an Integrated Development Environment (IDE) developed by
Microsoft for Windows operative system and supports a variety of languages
such as C, C++, C#, Visual Basic and F#. It is a non-free software, however
in 2014 Microsoft announced the Community Edition which features almost the
same functionality of the paid version but for free since it is aimed for small or
independent development teams. It is important to remark that Visual Studio
is compatible with the Unity Engine for writing and debugging scripts.

24

2.5. Tools and Technologies Used 2. Problem Analysis and Alternatives

Figure 2.12: A screenshot of the Photoshop workspace.

Figure 2.13: A screenshot of Visual Studio Community Edition.

The version we used for this project is Visual Studio Community Edition
2013 and was used to program all the C# scripts for the game logic as well as
to develop a part of the bluetooth communication subsystem.

Android (Software) and Android Studio IDE

Developed mainly for mobile devices, Android is an operative system built on
top of the Linux Kernel. It was initially developed by the company Android Inc.
which was bought by Google in 2005 and finally presented to the public in 2007
by the Open Handset Alliance (a group of mobile and technology companies)
as an open industry standard. Developing applications for Android is possible
on any major desktop operative system (Windows, OS X or Linux). Google an
provides a useful IDE called Android Studio and extensive API documentation
for free.

The target platform for this project was Android 4.3 and we used Android

25

2.5. Tools and Technologies Used 2. Problem Analysis and Alternatives

Figure 2.14: A screenshot of Android Studio IDE.

Studio version 1.1.0 which was used to develop the Android application involved
in the bluetooth subsystem.

2.5.2 Hardware

The choice of these devices is a result of the state of the art conclusions, with
the exception of the Oculus Rift which was used for being the best VR helmet
we had available.

Oculus Rift

The Oculus Rift is a Virtual Reality (VR) helmet currently being designed
by Oculus VR. A consumer version has not been released to the market yet,
instead two development kits are available (DK1 and DK2) intended to be used
for prototyping. The final version for consumers is expected to be released in
2016. It works by sending slightly different images to each user’s eye creating a
3D effect and also tracks the head orientation by using an Inertial Measurement
Unit (IMU) (with accelerometer, magnetometer and gyroscope) to move the
virtual camera accordingly. These two features can be easily integrated inside
Unity using the package provided by Oculus which includes a plugin to interact
with the Software Development Kit (SDK) as well as prefabs with a dual camera
setup ready to use.

Some technical details of the software and device used are shown next:

• Unity 4 Integration package version: 0.4.4-beta [22]

• Oculus SDK version: 0.4.4-beta

• Oculus Rift DK1 (fig. 2.15)

We used the Oculus Rift as our display and head orientation tracking device.

26

2.5. Tools and Technologies Used 2. Problem Analysis and Alternatives

Figure 2.15: The Oculus Rift DK1

Kinect Sensor

The Kinect sensor captures color and depth information and extracts the user
skeletal data from it so that it can be retrieved trough the Microsoft Kinect SDK
in the application side. This SDK can be used directly, however to simplify the
process an external Unity package was used that, among other features, provides
a framework to add custom gesture recognition and ready-to-use scripts that
map skeleton data to virtual character models.

Here are some technical details of the software and device used:

• Kinect with MS-SDK Unity package version: 1.12 [23]

• Microsoft Kinect SDK version 1.8

• Kinect Sensor for Xbox 360

In our project the purpose of this device is to provide full body tracking and
mapping the user movements to a virtual character.

Android Smartphone (Hardware) as an IMU

Most of current smartphones incorporate sensor fusion capabilities to determine
the device orientation by combining accelerometer, magnetometer and gyro-
scope data so one of this devices could be used as an Inertial Measurement Unit
(IMU). This feature added to the fact that smartphones are very easily available
today makes them a good candidate for a control device. For our project we
used a Sony Xperia Z2 phone as a physical object that controls elements inside
the virtual world.

27

2.5. Tools and Technologies Used 2. Problem Analysis and Alternatives

28

Chapter 3

Design and Implementation

This chapter first gives an overview of the different parts of the system and how
they interact with each other, then the three games that were created on top of
this system as well as the Unity scripts developed for this purpose are explained
in more detail.

3.1 System Architecture and Specifications

Figure 3.1: Hardware and software system architecture overview.

29

3.1. System Architecture and Specifications 3. Design and Implementation

Figure 3.2: An overview of the Unity scripts of the system:
The scripts not marked with asterisks were developed from scratch for the
project.
* Indicates that the script is a modified version of an external one.
** Indicates that the script is completely external and used without any modi-
fications.

30

3.2. Bluetooth Subsystem Development 3. Design and Implementation

3.2 Bluetooth Subsystem Development

To establish a wireless communication between the smartphone and the com-
puter we developed two applications from scratch. One of them will be installed
on the Android phone and will act as a client sending the data via bluetooth.
The other one will be a Windows application on the computer that will play
a double role: act as bluetooth server listening for incoming connections and
redirecting the received data via UDP to the specified port where the game will
be listening.

Figure 3.3: An overview of the code files involved in the development of the
bluetooth subsystem. The Android project Java files are shown on the left and
the Windows .NET C# files on the right:
The elements not marked with asterisks were developed from scratch for the
project.
* Indicates that the element is a modified version of an external one.
** Indicates that the element is completely external and used without any mod-
ifications.

3.2.1 Development of the Bluetooth Client Application

For our scenario a custom made app (we called BT IMU) (figure 3.4) retrieves
the phone sensor data and sends it via bluetooth to the computer so that it can
be used inside Unity to control virtual objects. The app lists all paired devices
and lets the user select one to connect to. Once the connection is successful it will
start sending sensor data obtained from Sensor.TYPE ROTATION VECTOR
[24]. Since this feature is only available from Android API level 18 onwards, the
application requires Android version 4.3 or later.

The choice of bluetooth is not arbitrary. A few quick tests were performed
sending the sensor data via WiFi and showed unacceptable results for real time
interaction due to high latency spikes and packet loss. These tests were done
using a third party app called Wireless IMU [25].(See section 4.1).

3.2.2 Development of the Bluetooth Proxy Application

The purpose of this program that runs on the Windows PC is to handle blue-
tooth pairing with the smartphone and receive the orientation data. This infor-
mation is then forwarded via a UDP loopback socket to the specified port on

31

3.2. Bluetooth Subsystem Development 3. Design and Implementation

Figure 3.4: A screenshot of the BT IMU Android app we created to send orien-
tation data over bluetooth. On the left a list of paired devices is displayed. On
the right the rotation vector data being sent.

which the Unity game application is listening. To implement bluetooth func-
tionality the 32feet library [26] for .NET was used. Ideally this library could be
used directly inside the Unity’s C# scripts so that it connects with the smart-
phone without the need for the UDP loopback hassle. The problem with this
approach is that Unity uses Mono [27] internally instead of .NET to provide
multi platform capabilities and 32feet library is currently not compatible with
Mono 2.0 since it doesn’t allow the creation of bluetooth sockets. To illustrate
the problem, the code in listing 3.1 will work for a .NET 3.5 application, however
it will fail if used inside Unity with Mono 2.0:

Listing 3.1: C# code fragment to create a bluetooth socket

using System.Net.Sockets;

[...]

// AddressFamily 32 indicates a Bluetooth address and

ProtocolType 3 is for RFCOMM

Socket s = new Socket ((AddressFamily)32, SocketType.Stream , (

ProtocolType)3);

[...]

Another possible solution would be to develop a Unity plugin in C++ that
handles bluetooth communication and provides wrapper methods to C# code,
however this option requires a Unity Pro license [28].

32

3.2. Bluetooth Subsystem Development 3. Design and Implementation

Figure 3.5: A screenshot of the Bluetooth Proxy Application we developed for
Windows. It shows current connection status and bitrate and allows to configure
remote and local UDP ports.

33

3.3. Game Development 3. Design and Implementation

3.3 Game Development

The core of this project consists of three small games that follow a similar
pattern. In all of them there is a specific task that has to be completed by
performing physical activities and the game will reward the player according to
how well he performed. There is also an initial calibration phase in each game
that helps the player to familiarize with the VR headset and controls.

The three games that will be described in detail in this section are:

• Sword Training: Implies manipulating a physical object (a smartphone)
that is represented in the virtual world as a sword.

• Pegasus Flight: Involves arm and head motion to control a winged horse
flying.

• Pegasus Ride: Requires the player to move his arms and torso to control
a character riding a horse.

3.3.1 Sword Training

What follows is a description of the design for the different aspects of the game:
what the game mission and goals are, how the player interacts with it and the
flow sequence of the game states. At the end of this section we describe the
relevant scripts we developed to materialize this design inside Unity 3D.

Game Mission Background

You are Edilmar, the elven warrior and protector of the Kingdom of Alistea.
The kingdom is at peace now, but not for too long so we better get you training
with the sword. I will start shooting some watermelons with the magic cannon
and you will have to slash them in mid air. The more efficient you are at it,
the better you will be rewarded.

In this game the user is strongly encouraged to accomplish the objectives since
there is not freedom of movement around the scenery so he has no choice but
slashing the fruits that come at him.

Game Goal

The game will end when the player manages to slash a certain (configurable)
number watermelons, however the more efficient he is the better the reward will
be. The degree of efficiency is measured by the ratio of watermelons cut and
total watermelons thrown. So the rewards are as follows:

• Gold medal: Efficiency greater than 65%.

• Silver medal: Efficiency between 30% and 65%.

• Bronze medal: Less than 30% efficiency.

34

3.3. Game Development 3. Design and Implementation

Figure 3.6: A screenshot from Sword Training scene showing the control map-
ping (left) and the possible awarded medals (right).

Interaction Design

In this game the player is required to perform accurate movements to hit a small
object. Since the avatar is a humanoid and the camera is completely in first
person mode, the user can see his virtual hands and body responding to his
movements. This creates a high sense of embodiment.

The avatar is controlled with Kinect for body tracking (special interest is in
the arms). The player also holds a smartphone in his hand as if he was wielding
a sword. The device orientation sensors are used to track the player’s hand
rotations so that the sword in game accurately follows his movements. The use
of a physical object or prop as an input method also provides some benefits [29]:

• Familiarity

• Direct actions

• Obvious use

• Palpability

• No tool moding (a single interface doesn’t have different ”modes” for differ-
ent operations, thus each physical object or prop has exactly one function)

• Haptic feedback

Another feature that was crucial to implement was the option to select be-
tween left-handed or right-handed mode. Some considerations had to be taken
when mapping the phone orientation to the virtual sword depending on which
hand was chosen since the coordinate axis of the avatar’s hands have a different
initial orientation but we wanted the player to hold the phone in the same way,
independently of the hand chosen.

The aural feedback for this game is present when the cannon shoots, when
a fruit is sliced successfully and when the player waves the sword above a set
minimum speed.

Finally it is important to remark that to create a more visually attractive
experience, the fruits are sliced exactly at the position and angle that the sword
has at the moment of the impact.

35

3.3. Game Development 3. Design and Implementation

Game States

The game has different states that follow sequentially:

Figure 3.7: Global game state diagram for Sword Training

• Calibration: Some simple instructions for calibration are displayed.
Such as placing the smartphone on a flat surface and pointing towards the
Kinect sensor to set the initial rotations correctly. The player is also given
the choice to use left or right hand to play.

• Countdown: A brief countdown starts to give some time for the player
to get ready.

• InGame: The actual game takes place and the cannon begins to shoot
watermelons at the player. It will end when the player slashes a certain
number of watermelons that can be configured beforehand.

• EndGame: A summary of how good the player performed is displayed.
He will be awarded with a medal according to how good he performed.

Scene Layout and Organization in Unity

The scene is comprised of four main GameObjects (a naming convention to
denote singleton objects with an underscore as a prefix is used throughout this
section):

• Character: A humanoid character that is controlled via AvatarController
script. This script is included in [23] and maps the user’s joints move-
ments to the virtual character. The character’s hand GameObject (right
or left depending on what the player selects) has a SensorRotator script
attached to control its rotation through a smartphone as explained in the
next section. The Sword GameObject is parented to the hand and has a
SwordController script that allows interaction with the environment.

36

3.3. Game Development 3. Design and Implementation

Figure 3.8: Sword Training scene showing the relevant GameObjects and at-
tached scripts.

• Cannon: Controlled by CannonController it spawns Melon GameObject
prefabs when shooting.

• GameManager: It has a SwordGameManager script attached to control
the game state.

• InputManager: Acts as a centralized way to access user input. It has a
SensorManager script attached which is explained in the next section and
a KinectManager which is included in [23] and is in charge of abstracting
the Kinect SDK functionality so that the AvatarController works properly.

37

3.3. Game Development 3. Design and Implementation

Script Description

In this subsection we describe the most relevant scripts that we developed for
the game:

SwordGameManager.cs
Implemented as a state machine, it controls the game flow and states described
in subsection 3.3.1 in addition to some other functions:

• Listens to user input events such as the key pressed to start playing.

• Enables and disables cannon firing.

• Listens to game events such as when a watermelon is cut by the player
and shot by the cannon and keeps a count of both to compute final score.
The method used for event subscription is similar to the one described in
listing 3.5 for the way point system.

• Controls all the GUI elements.

Just like FlightGameManager described in section 3.3.2, this class inherits from
the StateMachineBase script by Mike Talbot [30].

SensorManager.cs
It is in charge of listening on the specified UDP port for incoming orientation
data. This data comes from the Bluetooth Proxy Application (see section 3.2.2)
which in turn receives sensor data from a connected smartphone via bluetooth.
The data comes without processing from the device as provided by the Android
API by using the ”Rotation Vector” sensor type [24] (see section 3.2.1 as well).

This class exposes the smartphone orientation as quaternion that is calcu-
lated from the received vector data. It also performs an axis conversion so that
Android axis convention matches Unity’s coordinate system. Here is fragment
of the code that performs these operations:

Listing 3.2: Code fragment for quaternion calculation

rawBytes = udpClient.EndReceive(res , ref groupEP);

// Sensor data correspoinding to TYPE_ROTATION_VECTOR

Vector3 fusro = new Vector3 ();

fusro.x = System.BitConverter.ToSingle(rawBytes , 0);

fusro.y = System.BitConverter.ToSingle(rawBytes , 4);

fusro.z = System.BitConverter.ToSingle(rawBytes , 8);

/*

Process the received orientation vector to convert it in a

quaternion

See android API documentation

http :// developer.android.com/reference/android/hardware/

SensorEvent.html

*/

if(! float.IsNaN(fusro.x) &&

!float.IsNaN(fusro.y) &&

!float.IsNaN(fusro.z))

{

mNativeFusedQuaternion.x = fusro.x;

38

3.3. Game Development 3. Design and Implementation

// X and Z axes are swapped to match Unity ’s coordinate

system

mNativeFusedQuaternion.y = fusro.z;

mNativeFusedQuaternion.z = fusro.y;

mNativeFusedQuaternion.w = Mathf.Sqrt (1.0f - fusro.

sqrMagnitude);

}

First the data received from the UDP socket is stored in a Vector3 object
and checked to see if it is valid. This rotation vector r̃ represents the orientation
of the device as a combination of an angle and an axis, in which the device has
rotated through an angle θ such that:

r̃ = 〈x sin(θ/2), y sin(θ/2), z sin(θ/2)〉
|̃r| = sin(θ/2)

And the direction of r̃ is equal to the direction of the axis of rotation. So it
can be converted into a quaternion q̃ as follows:

q̃ = 〈x sin(θ/2), z sin(θ/2), y sin(θ/2), cos(θ/2)〉 =

= 〈r̃x, r̃z, r̃y,
√

1− |̃r|〉

Notice the swap performed to the x and y components. This is done due to
the fact that Android considers the Z axis as world’s up direction, while Unity
uses Y axis pointing upwards [24].

SensorRotator.cs
This script is used to actually rotate the GameObject it is attached to. The Sen-
sorManager class reports an absolute orientation (it ultimately relies on earth’s
magnetic north and gravity) however it would be unpractical to ask the player
to always use the smartphone pointing north in the real world. That’s why
relative orientation is used i.e. we only are interested in orientation changes
that we apply to the GameObject, a character’s hand joint that is wielding a
sword in the case of this game. Some of the concepts used to write this script
were taken from [31].

In addition, the script provides an option to swap axes for the case when a
player is left handed. This is made to account for the fact that the hand joints
of used character model have the X and Z axis pointing in the opposite direction
one from the other.

SmoothPositionFollow.cs
Smoothly interpolates the position of the GameObject towards the target spec-
ified. In this case it is used to make the VR camera rig follow the avatar’s head
position in a smooth way since directly parenting it to the character’s head joint
would cause jerky or sudden camera movements that can be uncomfortable for
the player.

OculusResetPose.cs
A simple script that will re-center the VR camera when the specified key is
pressed. It’s used to calibrate the VR headset before the game starts.

39

3.3. Game Development 3. Design and Implementation

CanonController.cs
Controls the cannon shooting, sound and visual effects (particle system and
recoil animation). The firing rate, range and accuracy can be easily tweaked as
well as the projectile prefab. The sound, apart from helping with immersion,
helps the player to match the timing of the sword swings with the cannon firing
rate.

MeshBuilder.cs
Initially taken from a script by Jens-Kristian Nielsen [32]. Contains useful
functions to ease mesh construction out of vertex data. It has been modified to
include a Triangle class that allows individual triangle splitting:

Listing 3.3: Fragment of the custom added code to MeshBuilder.cs to split
triangles

/// <summary >

/// Cuts a triangle trough a given plane.

/// </summary >

/// <param name=" planeNormal">The normal of the plane used to cut

</param >

/// <param name=" planePosition">A point lying on the cutting plane

</param >

/// <param name="up">The mesh used to store the triangle or

triangles (if any) that will be formed above the plane after

the cut </param >

/// <param name="down">The mesh used to store the triangle or

triangles (if any) that will be formed beneath the plane after

the cut </param >

/// <returns >The vertices that lie on the intersection with the

plane if any </returns >

public Vector3 [] Split(Vector3 planeNormal , Vector3 planePosition ,

MeshBuilder up, MeshBuilder down)

{

bool[] vUp = { false , false , false };

// We determine if each vertex is above or beneath the plane

and then consider all the combinations

vUp [0] = IsAbovePlane(vertices [0], planeNormal ,

planePosition);

vUp [1] = IsAbovePlane(vertices [1], planeNormal ,

planePosition);

vUp [2] = IsAbovePlane(vertices [2], planeNormal ,

planePosition);

int k1, k2;

// If all three vertices are above the plane we just add the

triangle to the upper half mesh since there ’s no

intersection

if (vUp [0] && vUp[1] && vUp [2])

{

up.AddTriangle(this);

}

// If all three vertices are beneath the plane we just add

the triangle to the lower half mesh since there ’s no

intersection

else if (!vUp[0] && !vUp[1] && !vUp [2])

{

down.AddTriangle(this);

40

3.3. Game Development 3. Design and Implementation

}

// In this case the plane actually intersects the

triangle so we have stuff to do

else

{

// We use this loop to iterate over the vUp boolean

array and consider every case of vertices being

above or beneath the plane

// This is done to make the code more compact instead

of having 4 possible if / else ’s

for (int k = 0; k < 3; k++)

{

k1 = (k + 1) % 3;

k2 = (k + 2) % 3;

// New vertices created at the plane cut

Vector3 nV0 = Intersec(vertices[k], vertices[k1],

planeNormal , planePosition);

Vector3 nV1 = Intersec(vertices[k], vertices[k2],

planeNormal , planePosition);

// New normals for the new vertices

Vector3 nN0 = (normals[k] + normals[k1]) / 2f;

Vector3 nN1 = (normals[k] + normals[k2]) / 2f;

// New UV texture coordinates for the new vertices

Vector2 nUV0 = UVLerp(uvs[k], uvs[k1], vertices[k],

vertices[k1], nV0);

Vector2 nUV1 = UVLerp(uvs[k], uvs[k2], vertices[k],

vertices[k2], nV1);

// If one vertex is above the plane and two are

beneath it

if (vUp[k] && !vUp[k1] && !vUp[k2])

{

// We add one new triangle to the upper half mesh

// This triangle is formed by the original vertex

above the plane and two new vertices at the

cut plane position (nV0 and nV1 that we

calculated before).

up.AddTriangle(new Vector3 [] { nV0 , nV1 , vertices[

k] }, new Vector3 [] { nN0 , nN1 , normals[k] },

new Vector2 [] { nUV0 , nUV1 , uvs[k] });

// For the lower part two new triangles will be

formed since there are two vertices beneath

the plane and two vertices at the plane cut.

// We first form a triangle with the vertices

beneath the plane (k1 and k2) and one of the

vertices at the plane cut (nV0).

// We also store the indices of two of these new

added vertices to reuse them for the other

triangle.

int i0 = down.AddVertex(nV0 , nN0 , nUV0);

down.AddVertex(vertices[k1], normals[k1], uvs[k1])

;

int i2 = down.AddVertex(vertices[k2], normals[k2],

uvs[k2]);

// For the second triangle we just reuse two of

the added vertices by referencing them with

the stored indices (i0 and i2)

down.Triangles.Add(i0);

41

3.3. Game Development 3. Design and Implementation

down.Triangles.Add(i2);

// And finally add the third vertex which is the

other vertex at the plane cut.

down.AddVertex(nV1 , nN1 , nUV1);

// We return the newly created vertices at the

plane cut so that they can be used to create

new geometry , for example to fill the gap.

return new Vector3 []{nV0 , nV1};

}

// If one vertex is beneath the plane and two are

above it

else if (!vUp[k] && vUp[k1] && vUp[k2])

{

// We add one new triangle to the lower half

mesh

// This triangle is formed by the original

vertex beneath the plane and two new

vertices at the cut plane position (nV0 and

nV1 that we calculated before).

down.AddTriangle(new Vector3 [] { nV0 , nV1 ,

vertices[k] }, new Vector3 [] { nN0 , nN1 ,

normals[k] }, new Vector2 [] { nUV0 , nUV1 ,

uvs[k] });

// For the upper part two new triangles will be

formed since there are two vertices above

the plane and two vertices at the plane cut.

// We first form a triangle with the vertices

above the plane (k1 and k2) and one of the

vertices at the plane cut (nV0).

// We also store the indices of two of these new

added vertices to reuse them for the other

triangle.

int i0 = up.AddVertex(nV0 , nN0 , nUV0);

up.AddVertex(vertices[k1], normals[k1], uvs[k1])

;

int i2 = up.AddVertex(vertices[k2], normals[k2],

uvs[k2]);

// For the second triangle we just reuse two of

the added vertices by referencing them with

the stored indices (i0 and i2)

up.Triangles.Add(i0);

up.Triangles.Add(i2);

// And finally add the third vertex which is the

other vertex at the plane cut.

up.AddVertex(nV1 , nN1 , nUV1);

// We return the newly created vertices at the

plane cut so that they can be used to create

new geometry , for example to fill the gap.

return new Vector3 []{nV0 , nV1};

}

}

}

return new Vector3 []{};

}

More in depth information about triangular mesh splitting can be found in [33].

42

3.3. Game Development 3. Design and Implementation

MeshSplit.cs
This class does the actual GameObject mesh splitting. It relies on the previ-
ously described MeshBuilder class and it is in charge of setting up the two new
GameObjects that are produced after splitting (adding a MeshCollider and con-
figuring the MeshRenderer material). The newly created pieces however have a
hole that is not filled with new geometry. Since this could not be implemented
due to time and complexity constrains, a simple solution using a custom shader
to paint back faces with a solid color in a second pass was used. See figure 3.9.
The code for this custom shader can be seen in listing 3.4.

Listing 3.4: Custom colored back faces shader

Shader "Custom/ColorBackfaces" {

Properties {

_Color ("Main Color", Color) = (1,1,1,1)

_BfColor ("Backface Color", Color) = (1,0,0,1)

_MainTex ("Base (RGB)", 2D) = "white" {}

}

SubShader {

// Extra pass that renders only backfaces

Pass {

Cull Front

Color [_BfColor]

}

// Use forward rendering passe from Diffuse shader

UsePass "Diffuse/FORWARD"

}

Fallback "Diffuse/VertexLit"

}

Figure 3.9: On the left the geometry of a split watermelon with culled back
faces. On the right the same geometry but with a shader that renders back
faces with a solid red color.

Splittable.cs
This component script is used to identify the GameObjects that are actually
splittable and keeps track of the pieces after a split to delete them after a few
seconds to save memory.

43

3.3. Game Development 3. Design and Implementation

SwordController.cs
This scripts is attached to the sword GameObject and relies on a trigger collider.
Its function is to fire events when a GameObject with a Splitable component
attached is hit (watermelons in this case). These events are listened by the
SwordGameManager class to account for score. When a collision with a Splitable
GameObject occurs, its Split method is called passing the required information
to it (specially the cut direction) so that a proper splitting can be made. Every
time an object is cut the script plays a characteristic sound to provide aural
feedback so that the user can know if he hit the target or not without actually
having to look at the object.

44

3.3. Game Development 3. Design and Implementation

3.3.2 Pegasus Flight

In this section we will describe the different aspects of the game: a brief back-
ground of the mission, its goal, the way the player interacts with the world and
the game states. Finally a description of the most relevant C# scripts developed
to make the design possible is presented.

Game Mission Background

You are Compay this time, you will notice that you have no arms but wings!
That is because you are a winged horse now, a Pegasus. Your job is to take our
visitors that come to Alistea from the magic entry portal up in the clouds to the
village down in the ground. As an old Pegasus you are I am afraid you might
not remember the path, so I have spawned some magic rings that will guide you.
Just pass through those rings and I will give you a medal if you are fast at it.

In this game the player has freedom of choice: he can either pass through the
rings to complete the circuit and be awarded a medal or just fly around and
explore the environment.

Figure 3.10: Pegasus Flight as seen from player’s perspective

Game Goal

The goal is to complete a circuit which consists of a collection of way points as
the ones seen in figure 3.10 that must be passed through in order in the shortest
possible time. Rewards are given according to completion time:

• Gold medal: time less than 55 seconds.

• Silver medal: time between 55 and 85 seconds.

• Bronze medal: time greater than 85 seconds.

Interaction Design

For this game it is very important for the player to understand how the virtual
character responds to his movements in order to control speed and making turns.
The precision of these movements is not as crucial as the timing of them.

45

3.3. Game Development 3. Design and Implementation

Figure 3.11: Circuit for Pegasus Flight.

The Oculus Rift orientation sensor data is used to control the direction of
flight (i.e. the avatar turns in the direction that the player is looking).

The Kinect sensor is used to control flight speed. The game detects when
the user flaps an arm or both at the same time. Depending on the amplitude
of this arm movement the avatar will be given a stronger or weaker impulse
forward. Player’s arms orientation is also tracked for two purposes:

• Allowing the avatar to glide by adding a gravity compensating force pro-
portional to how extended the player’s arms are.

• Providing visual feedback to the player by mapping the player’s arm move-
ments to the avatar’s wings.

In early tests it seemed that having a static frame of reference that moves
with the camera helps reducing motion sickness when the horizon line moves.
For this reason the camera partially shows the avatar’s head and wings (see
figure 3.10) instead of being positioned in the Pegasus head as it would be more
logical for a first person experience. This setup also provides visual feedback
for the player since he can see the wings moving like his arms.

Aural feedback was added too so that a sound is played when the player
successfully flaps his arms and the gesture is detected.

Game States

The game has three different states that follow sequentially:

• Calibration: A brief calibration is required to align the Oculus Rift
sensor with the in game camera orientation. This state is also intended
for the player to familiarize with the avatar and see how it responds to his
arms movements and head motion.

• Ingame: The game starts and a timer is displayed. If the player gets
too far away from the next way point it is possible to reset the avatar’s
position to the last way point.

46

3.3. Game Development 3. Design and Implementation

Figure 3.12: Global game state diagram for Pegasus Flight

• Endgame: The time taken to complete the circuit is displayed along
with the medal awarded.

Scene Layout and Organization in Unity

Figure 3.13: Pegasus Flight scene showing the relevant GameObjects and at-
tached scripts.

The core functionality of the scene is grouped in these three GameObjects:

• Pegasus: The player’s avatar itself. It has the following scripts attached:

– PegasusController: Takes care of visual and sound effects and some

47

3.3. Game Development 3. Design and Implementation

avatar logic such as detecting when it is landed or in the air to adjust
the maximum reachable speed accordingly.

– DriftCorrection: Reduces the drift caused by the physics engine so
that the avatar is easier to control.

– ImpulseMotor: Can apply an impulse that decays with time accord-
ing to a configurable curve. It is responsible for the avatar’s motion.

– TransformLookControl: In charge of rotating the avatar towards the
direction the player is looking.

– ResetToLastWaypoint: When the configured key is pressed it returns
the avatar to the last passed way point.

These scripts are explained in more depth in the next section.

• GameManager: Analogously to the Sword Training scene, this object has
a FlightGameManager script attached to control the game state.

• InputManager: It groups the input related scripts. In this case PegasusK-
inectController which talks to KinectManager [23] to extract the needed
information, such as hand and shoulder positions, and listen to gesture
detection events.

48

3.3. Game Development 3. Design and Implementation

Script Description

Here we describe the most relevant scripts that we developed for the game:

FlightGameManager.cs
Implemented as a state machine, it controls the game flow and states described
in section 3.3.2 in addition to some other functions:

• Listens to user input events such as the key pressed to start playing.

• Enables and disables the Pegasus movement depending on the game state.

• Listens to game events like when the Pegasus goes through a circuit way
point or reaches the goal as shown in listing 3.5.

• Computes the final player score according to the time taken to reach the
goal.

• Controls the display of all the GUI elements.

This class inherits from StateMachineBase, a useful script created by Mike Tal-
bot [30].

Listing 3.5: Event subscription to the way point system

public void INGAME_OnEnterState ()

{

...

Waypoint.onWaypointReached += OnWaypointReached;

Waypoint.onLastWaypointReached += OnLastWaypointReached;

...

}

public void INGAME_OnExitState ()

{

...

Waypoint.onWaypointReached -= OnWaypointReached;

Waypoint.onLastWaypointReached -= OnLastWaypointReached;

...

}

public void OnWaypointReached(GameObject player)

{

++ passedWaypoints;

waypointsText.text = string.Format("{0} / {1}", passedWaypoints ,

totalWaypoints);

}

public void OnLastWaypointReached(GameObject player)

{

currentState = States.ENDGAME;

}

Waypoint.cs
Way points work like a linked list of elements that must be traversed in order.
For this reason each Waypoint object but the last one (considered to be the

49

3.3. Game Development 3. Design and Implementation

goal) stores a reference to the next one in a chain-like fashion. A reference to
the current Waypoint that must be gone through is also kept as a static field
that can be accessed from the outside. Listing 3.6 shows how this behavior is
implemented.

Listing 3.6: Code fragment for way point logic

public class Waypoint : MonoBehaviour

{

...

public static Waypoint currentWaypoint;

public Waypoint nextWaypoint;

public bool isFirst;

public static event Action <GameObject > onWaypointReached;

public static event Action <GameObject > onLastWaypointReached;

void Start ()

{

...

if (isFirst)

{

Waypoint.currentWaypoint = this;

}

...

}

void OnTriggerEnter(Collider other)

{

if(other.tag == "Player")

{

// Is this the current waypoint that must be passed?

if (Waypoint.currentWaypoint == this)

{

Waypoint.currentWaypoint = nextWaypoint;

if(onWaypointReached != null)

{

onWaypointReached(collider.gameObject);

}

// Is this the last waypoint?

if(nextWaypoint == null && onLastWaypointReached != null)

{

onLastWaypointReached(collider.gameObject);

}

}

...

}

}

...

}

The script fires events when a GameObject tagged as ”Player” enters its
trigger collider only if the static field currentWaypoint is the same as the current
script instance i.e., if the player is passing trough the way points in the correct
order.

50

3.3. Game Development 3. Design and Implementation

ResetToLastWaypoint.cs
When the specified key is pressed it will set the position of the GameObject to
the last passed way point and stop it. In VR sudden changes of player’s camera
position can cause disorientation so this script fades out the screen to black
before the position is changed and slowly fades in again once the operation is
complete. The main purpose of it is to help players get back in track if they go
too far away from the next way point.

PegasusKinectController.cs
This script interacts with KinectManager to control the Pegasus avatar in two
ways:

• Implements the GestureListener interface provided in [23] to react to wing
flap gestures when the user moves the arms up and down. When this flap
gesture is detected the Pegasus avatar is given a forward impulse propor-
tional to the amplitude of the arm movement. This is done through the
PegasusController and ImpulseMotor scripts. It is also worth mentioning
that aural feedback was added so that the wing flapping actually produces
a sound with a volume proportional to the amplitude of the gesture.

• Keeps track of the player’s hands position to know how the arms are
rotated and move the avatar’s wings accordingly via the WingControl
script. The function shown in 3.7 returns a value of 1.0 when the user’s
right hand is exactly above his right shoulder and a value of 0.0 when it is
exactly beneath it. This return value is passed to the WingControl script
to use it as a normalized animation time and play the corresponding frame
of the clip. The procedure is shown more clearly on figure 3.14.

Figure 3.14: Calculation of animation time from arm rotation.

Listing 3.7: Code fragment calculate normalized animation time from hand
position

51

3.3. Game Development 3. Design and Implementation

public float GetRightHandHeight ()

{

if (manager.IsJointTracked(userId , rShoulderIdx) && manager.

IsJointTracked(userId , rHandIdx))

{

// Get hand and shoulder position

Vector3 rightHandPos = manager.GetJointPosition(userId ,

rHandIdx);

Vector3 rightShoulderPos = manager.GetJointPosition(userId ,

rShoulderIdx);

// Calculate the vector that goes from shoulder to hand

ignoring depth (z coordinate not used)

Vector2 v = new Vector2(rightHandPos.x - rightShoulderPos.x,

rightHandPos.y - rightShoulderPos.y).normalized;

// Take the dot product of this vector with the (0,1) vector

float r = Vector2.Dot(v, Vector2.up);

// Map it to the [0,1] interval

r += -1f;

r *= -0.5f;

return r;

}

return float.PositiveInfinity;

}

PegasusController.cs
It is in charge of controlling the avatar’s movement (using the ImpulseMotor
script) and rotation as well as visual and sound effects like a dust trail and
footsteps when the Pegasus is walking on the ground. The script also sets the
maximum speed that the avatar can reach depending on whether it is landed or
in the air.

ImpulseMotor.cs
Exposes a public method called Impulse which when invoked applies a force over
time to the GameObject. This force decays over time according to a configurable
curve that can be tweaked to achieve the desired behavior. See figure 3.15. It
also limits the GameObject’s speed to the specified maximum value.

WingControl.cs
This script controls the wing animation playback according to the time value
passed by PegasusKinectController and the vertical force added to the avatar
so that it can glide and stay in the air. The magnitude of this force depends on
the animation time in such a way that it is greater when the wing is closer to
the horizontal position (or animation times around to 0.5).

DriftCorrection.cs
In order to make the avatar control easier and avoid possible simulator sickness
caused by lateral motion (as described in [15] on page 21) it is useful to correct
the drifting by adding a force that compensates it. This is simply done by taking
the current velocity vector in world space and transforming it to local coordi-

52

3.3. Game Development 3. Design and Implementation

Figure 3.15: Settings for the ImpulseMotor script.

nates to see how much of it is affecting the x-axis and add a force proportional
to it with negative sign. The code for this script is shown in listing 3.8.

Listing 3.8: Code to correct rigidbody drifting.

public class DriftCorrection : MonoBehaviour

{

public float driftCorrection = 4f;

void FixedUpdate ()

{

Vector3 relVelocity = transform.InverseTransformDirection(

rigidbody.velocity);

rigidbody.AddRelativeForce(-relVelocity.x * driftCorrection *

Vector3.right);

}

}

TransformLookControl.cs
This script maps the rotation of an external GameObject’s transform to the
GameObject it is attached to. This mapping can be modulated with a curve to
smooth angle variations. In this scene its purpose is to map the player’s head
rotation obtained from the Oculus Rift to the avatar’s rotation, this means it
causes the Pegasus to rotate smoothly towards the direction the user is looking.

OculusResetPose.cs
A simple script that will re-center the VR camera when the specified key is
pressed. It’s used to calibrate the VR headset before the game starts.

53

3.3. Game Development 3. Design and Implementation

3.3.3 Pegasus Ride

In this section we show a description of the different game aspects from the
design point of view: the mission background we set, what the goal is, the
way the player interacts with the game and the different states of it. Then we
proceed with a description of the game scripts that make this design possible.

Game Mission Background

This time you are Edilmar the elf again. Now that your training with the sword
is over and Compay the Pegasus is here, you might want to go for a ride and it
will serve you both as a training. Again, I made it easier for you by spawning
some magic rings that will guide you to the goal. By the way, you already know
the deal: if you do it fast I will reward you with the gold medal!

Similarly to the previous game, in this experience the player has freedom of
choice: he can either follow the rings to complete the circuit and receive a
medal or walk around and explore.

Figure 3.16: Pegasus Ride as seen from player’s perspective. In this case the
avatar’s hands are visible.

Game Goal

Similarly to the previous game, the goal is to complete a circuit by going through
a series of way points in order and as quickly as possible. The player is awarded
with a medal according to the time taken to reach the goal:

• Gold medal: time less than 40 seconds.

• Silver medal: time between 40 and 60 seconds.

• Bronze medal: time greater than 60 seconds.

54

3.3. Game Development 3. Design and Implementation

Figure 3.17: Circuit for Pegasus Ride.

Interaction Design

As for the previous game, the player must understand how the character re-
sponds to his movements in order to control speed and making turns. Although
the timing of these movements is crucial, precision is important too. In this
case however, the avatar is landed on the ground all the time and the movement
speed is lower, creating a sense of more safety and lower difficulty.

The Kinect sensor is used to control both the speed and Pegasus direction.

Speed is controlled by moving both hands vertically and close to each other as
if they were holding horse reins. The amplitude and frequency of this movement
is used to determine the strength impulse transmitted to the Pegasus avatar.

The direction control is done by tracking the player’s torso orientation and
using it to rotate the Pegasus accordingly.

To increase the sense of immersion and provide visual feedback, the Kinect
data is used to map player’s movements to the human character riding the
Pegasus.

Game States

The states for this game are the same as for the flying game:

• Calibration: A brief calibration is required to align the Oculus Rift sen-
sor with in game orientation. This state is also intended for the player to
familiarize with the avatar and see how it responds to his arms movements.

• Ingame: The game starts and a timer is displayed. In this state if the
player gets too far away from the next way point it is possible to reset the
avatar’s position to the last way point.

• Endgame: The result screen showing the completion time and medal
awarded is displayed.

55

3.3. Game Development 3. Design and Implementation

Figure 3.18: Global game state diagram for Pegasus Ride.

Scene Layout and Organization in Unity

The layout for this scene is almost identical to the one for Pegasus Flight since
the game goal is the same. The only changes are in how the player controls the
avatar and the location of the way points. (See figure 3.17).

Figure 3.19: Pegasus Ride scene showing the relevant GameObjects and at-
tached scripts.

• Character: The player’s avatar itself. It is controlled by the AvatarCon-
troller script provided in [23] that maps the skeletal data from kinect to
the virtual character’s skeleton. However for this case the script was mod-
ified to ignore certain bones and not to change their rotation as seen in

56

3.3. Game Development 3. Design and Implementation

figure 3.20. The reason for this is that we don’t want to move the legs of
the avatar since it is sitting on the Pegasus and it would not look right.

Figure 3.20: AvatarController script configuration options showing the added
”Bones To Ignore” list

The character GameObject is parented to the Pegasus so that it moves
with it.

• Pegasus: The setup for this GameObject is almost the same with some
small changes:

– PegasusController: Just like in the Pegasus Flight scene, this script
takes care of visual and sound effects and some avatar logic such
as detecting when it is landed or in the air and adjusting the maxi-
mum speed accordingly. However, since most of the time the Pegasus
will be grounded in this scene, the maximum speed on ground was
tweaked to make it a bit lower.

– TransformLookControl: In this case this script has been configured
so that it causes the player to control the avatar direction with his
torso.

– DriftCorrection: Reduces the drift caused by the physics engine so
that the avatar is easier to control.

– ImpulseMotor: Can apply an impulse that decays with time accord-
ing to a configurable curve. It is responsible for the avatar’s motion.

57

3.3. Game Development 3. Design and Implementation

– ResetToLastWaypoint: When the configured key is pressed it returns
the avatar to the last passed way point.

• GameManager: Since the game states are the same as in Pegasus Flight
scene, no changes had to be done for the FlightGameManager script so it
has been reused as is.

• InputManager: As before, this object holds the input related scripts. In
this case however there is a HorseKinectController (instead of PegasusK-
inectController) that communicates with KinectManager [23] for gesture
detection events and tracking of the player torso to control the avatar
direction.

Script Description

Since an in depth explanation for all the scripts involved in this scene can be
found in section 3.3.2, just the new one is described here.

HorseKinectController.cs
This script interacts with KinectManager to control the motion and orientation
of the Pegasus in two ways:

• Implements the GestureListener interface provided in [23] to react to ges-
tures when the user moves his hands together up and down. When this
gesture is detected the Pegasus avatar is given a forward impulse propor-
tional to the amplitude of the arm movement. This is done through the
PegasusController and ImpulseMotor scripts.

• Keeps track of the player’s torso rotation. This rotation is then applied to
an external GameObject that, for the case of this scene, is being watched
by the TransformLookControl 3.3.2 script controlling the Pegasus look
direction. This setup enables the player to control the movement direction
by rotating the torso.

58

3.4. Summary of Art Assets 3. Design and Implementation

3.4 Summary of Art Assets

Most of the art assets used (3D models and textures) were taken from the
Internet for free, however some of them were modified or created from scratch
to match the project requirements. Next there is list that summarizes all of
them.

3.4.1 Environment

Name Author Source

Baker House Evgenia
https://www.assetstore.

unity3d.com/en/content/26443

Cartoon Lowpoly
Water Well

Antonio Neves
https://www.assetstore.

unity3d.com/en/content/29717

Cannon Raúl Araújo
Modeled and hand painted in
Blender.

Fortress Watchtower Ma-at Art
https://www.assetstore.

unity3d.com/en/content/16779

Free Rocks TripleBrick
https://www.assetstore.

unity3d.com/en/content/19288

FX Mega Pack Unluck Software
https://www.assetstore.

unity3d.com/en/content/8933

Medieval Toon
House

Night Forest
https://www.assetstore.

unity3d.com/en/content/16674

Medieval Wagon
Pack

PantherOne
http://opengameart.org/

content/medieval-wagon-pack

Mushroom Land Manufactura K4
https://www.assetstore.

unity3d.com/en/content/1035

Skybox Raúl Araújo Hand painted in Photoshop.

Watermelon Raúl Araújo
Modeled in Blender and hand
painted in Photoshop.

Table 3.1: 3D models and packages used for the environment design.

59

https://www.assetstore.unity3d.com/en/content/26443
https://www.assetstore.unity3d.com/en/content/26443
https://www.assetstore.unity3d.com/en/content/29717
https://www.assetstore.unity3d.com/en/content/29717
https://www.assetstore.unity3d.com/en/content/16779
https://www.assetstore.unity3d.com/en/content/16779
https://www.assetstore.unity3d.com/en/content/19288
https://www.assetstore.unity3d.com/en/content/19288
https://www.assetstore.unity3d.com/en/content/8933
https://www.assetstore.unity3d.com/en/content/8933
https://www.assetstore.unity3d.com/en/content/16674
https://www.assetstore.unity3d.com/en/content/16674
http://opengameart.org/content/medieval-wagon-pack
http://opengameart.org/content/medieval-wagon-pack
https://www.assetstore.unity3d.com/en/content/1035
https://www.assetstore.unity3d.com/en/content/1035

3.4. Summary of Art Assets 3. Design and Implementation

3.4.2 Characters

Name Author Source

Humanoid Avatar Unity Technologies
https://www.assetstore.

unity3d.com/en/content/5328

Animated Horse* Dootsy Development*
https://www.assetstore.

unity3d.com/en/content/16687

Table 3.2: 3D Character models used.

*Due to the difficulty of finding a usable Pegasus 3D model, this horse asset
was modified by adding wings (modeled and animated from scratch in Blender)
and a simple re-texturing (in Photoshop) as shown in figure 3.21.

Figure 3.21: The Animated Horse model before and after having wings modeled
and being re-textured.

60

https://www.assetstore.unity3d.com/en/content/5328
https://www.assetstore.unity3d.com/en/content/5328
https://www.assetstore.unity3d.com/en/content/16687
https://www.assetstore.unity3d.com/en/content/16687

Chapter 4

Results and Evaluation

The purpose of this chapter is to describe the different tests and validations we
ran during the development and once we had our final system ready.

4.1 Development Tests

These tests are intended to decide which device will be used since the theoretical
analysis of the state of the art was not fully conclusive. So in this section we
describe the tests that we performed to find the most optimal device setup for
our technical and budget requirements.

We started the testing phase using a Kinect sensor which was already avail-
able at the University and a Wii Remote controller (without Wii Motion Plus)
due to the low price. However we soon realized that the Wii Remote had some
important drawbacks:

• Non robust bluetooth connection and complex setup in Windows.

• High latency and low precision.

• Lack of Y axis rotation data.

• Tracking is lost when the LEDs are out of sight from the Wii Remote
camera. This is an important issue since the player will not be able to see
the external LED bar when using a VR headset so the tracking can be
lost very often.

At this point we decided to try a completely different solution by taking
advantage of the fact that most of current smartphones have an Inertial Mea-
surement Unit inside. The problem was to transmit this data to the computer
without using any wires. We tried an existing Android application called Wire-
less IMU[25]. This application sends raw data of each individual sensor in the
device (accelerometer, gyroscope and magnetometer) over UDP via WiFi to a
remote host in the specified IP address.

After a few tests performed with this application some issues were found:

• High jitter and latency spikes due to the WiFi connection making it non
suitable for real time applications.

61

4.1. Development Tests 4. Results and Evaluation

Figure 4.1: A screenshot from Wireless IMU showing some configuration op-
tions.
Source: https://play.google.com/store/apps/details?id=org.zwiener.

wimu

• Requires the device to be connected to the same network than the com-
puter making it inflexible.

• The application provides raw sensor data so the device orientation must be
calculated from it in the computer side. Although it could be made since
this is a well documented problem, it is not trivial [34]. For the tests a
quick attempt was made to extract orientation from raw sensor data with
non acceptable results. These results could be improved if further work
was done, however we found an easier solution thanks to an Android API
feature which internally makes all the required calculations and provides
the device orientation directly as a vector [24] so no further processing is
needed.

Knowing that the Andoid API can provide accurate orientation data easily
and directly, all we needed was to develop a custom application to send this data
to the computer as described in section (3.2). Our new Android application
features:

• Bluetooth connection for lower latency. Also since bluetooth pairing is
handled automatically by Windows and Android in both sides, the con-
nection will be easy and quick unlike with the Wii Remote.

• Sending orientation data directly instead of raw sensor information.

62

https://play.google.com/store/apps/details?id=org.zwiener.wimu
https://play.google.com/store/apps/details?id=org.zwiener.wimu

4.2. Development Validation 4. Results and Evaluation

4.2 Development Validation

During the latest stages of the development we wanted to perform some tests to
know what changes and adjustments we had to make for the final validations at
the primary school. We emailed some university students asking for volunteers
to test the system and we finally gathered a group of ten that would be helping
us.

Figure 4.2: Volunteers testing the system in the lab.

For the tests, the users came in groups of two. They were given some basic
indications on how to use the system and tried all the three games.

Although the users were adults instead of children, we extracted very useful
feedback and conclusions:

• Most users got the general impression that the game was realistic.

• All the users thought the experience was fun.

• Most users got the general impression that the system was easy to use.

• Just one user mentioned the fact that the head of the Pegasus is visible in
the Pegasus Flight game despite of being a first person game (see section
3.3.2).

• Most users thought that the Pegasus Flight circuit to the goal was too
long and should be shorter.

• Most users thought that the Sword Training game was too short and the
target number of watermelons to slice should be increased.

63

4.3. Final Validation 4. Results and Evaluation

4.3 Final Validation

For the final validation we planned an experience within the context of the mul-
tiple intelligence development activities that were being carried out at ”CEIP
Seseña y Benavente”. These activities were performed in groups of four or
five children of ages between 7 and 9 and based on the book ”El Secreto de
Marcos”[12]:

1. Drawing and describing a character from the book. Every team member
does this individually for the same character. This activity is intended to
exercise intelligences: visual, linguistic, intra-personal.

2. Showing the drawings and descriptions to the rest of the team members
and putting together the similarities. This activity is intended to exercise
intelligences: inter-personal, logical-mathematical and linguistic.

3. Matching different types of music to the previously described characters
according to their personalities. First listening to the music for one minute
and then discussing which character fits it better. Then moving around
the classroom imitating that character to the rhythm of the music paying
attention to the emotions and gestures that are transmitted. This activ-
ity is intended to exercise intelligences: intra-personal, musical, bodily-
kinesthetic, linguistic and interpersonal.

4. Modeling the favorite character with clay and explaining why that charac-
ter was chosen. This activity is intended to exercise intelligences: visual,
intra-personal, interpersonal and linguistic.

Figure 4.3: Some of the drawings and clay modeled characters made by the
children.

Our experience took place right after the first activity (drawing the characters)
in a separate room that was considered a magical cave and decorated for the

64

4.3. Final Validation 4. Results and Evaluation

occasion. The children came with their teammates (groups of four or five) while
the rest of the class continued with the other activities. The children that tried
the games were told to not say anything to the rest until everyone had tried it.

Figure 4.4: The intrepid players training with the sword (left) and flying as a
Pegasus (right).

After running the tests with over 20 children, here are some of the conclusions
we drew:

• Some of the children felt dizzy during the experience and some others felt
alright all the time.

• In general terms they found it easy to slash watermelons but passing
through the rings flying was difficult.

• The Pegasus Flight game was preferred over Sword Training.

• We thought of creating a sword-like prop or gadget where the smartphone
could be attached to instead of grabbing the device directly to increase
the realism. However most children liked the fact that of the ”magical
transformation” of a real everyday object into a virtual world fantastic
item: The phone is just a phone but inside the real world it magically
turns into a fancy sword.

• Most of the children expressed that they would buy the system if it was
for sale.

• Most of the children would like to participate in a similar experience again.

65

4.3. Final Validation 4. Results and Evaluation

• The VR experience was the best rated among all the activities by the
children. In general, children preferred the activities involving psycho-
motor skills such as drawing, modeling, dancing or our games, rather
than other type of activities (decision making, group discussions, etc.).

• After the activity most of the children showed an increased interest for
reading the book and knowing more about the characters.

We also found some technical problems with the system. However none of
them was crucial:

• Issues with Kinect and the room lighting affecting its correct functioning.

• The cables in the Oculus Rift can cause discomfort and accidents with the
equipment if care is not taken.

• Having to manually adjust the height of the Kinect sensor to adapt to the
different heights of the children. However the tracking was robust to the
different heights, not being affected by the separation between joints and
the movement mapping to the avatar was correct.

Additionally to these conclusions, we conducted a survey for the children to
fill at home with their parents. Currently we are still collecting and analyzing
the data to reflect the results in an article for the IEEE Transactions on Learning
Technologies (TLT).

66

Chapter 5

Project Management and
Planning

In this chapter we present the time plan for the project as well as a budget
estimation for the it.

5.1 Project Time Plan

Since the objectives of the project have been modified and new ones were defined
during the early stages, it was not possible to establish a strict time plan from
the very start. In addition to that, the final phase of the development overlapped
with class schedule and the exam season. For this reason, the Gantt diagram
(figure 5.1) does not reflect the actual hours required for each stage, instead it
represents the starting and finishing dates of them. However, an estimation of
the real work hours dedicated to each part is presented in tables 5.1 and 5.2.

Most of the development tasks could be developed simultaneously or within
overlapping time periods since the modularity of the system allowed to develop
and test different parts independently. Nevertheless, one of the most time con-
suming stages was the testing and adjustment of parameters for each game once
its different systems had been developed. The purpose of these adjustments
was to create a comfortable experience as well as balancing the difficulty and
tweaking of controls.

The time distribution of each task is reflected in figure 5.2 as a Gantt diagram
along with a textual list of them in figure 5.1.

67

5.1. Project Time Plan 5. Project Management and Planning

Figure 5.1: List of project tasks with start and end dates as well as duration in
days.

68

5.1. Project Time Plan 5. Project Management and Planning

Figure 5.2: Gantt diagram of the project with the critical tasks grayed out.

69

5.2. Budget Considerations 5. Project Management and Planning

5.2 Budget Considerations

In this section we will describe the different costs involved in the development
of the project. According to their origin we will classify them in personnel,
equipment and software license costs.

5.2.1 Staff Costs

The development of the system required the work of a project tutor (Ph.D.) and
a developer (undergraduate). Considering the average salary per hour (20AC/h
for the developer and 37AC/h for the project tutor) and the total work hours we
can deduce an estimation of the final personnel associated costs.

Developer

Stage Description Time Cost

Analysis
State of the art analysis and

scope of the project.
12h 240AC

Preliminary
tests

Practical analysis and testing of
the different technologies and
their possible integration.

52h 1040AC

Bluetooth
subsystem

Development of the bluetooth
related software components.

38h 760AC

Game design
Prototyping the game goals,

mechanics and controls.
50h 1000AC

Game
development

Integration of the different
systems and art assets.

63h 1260AC

Documentation
Writing of this document and

manuals.
81h 1620AC

Testing
sessions

Tests and demos run in the lab
and primary school.

11h 220AC

Meetings On-line and physical meetings. 6h 120AC

Total 323h 6460AC

Table 5.1: Estimated personnel costs for the project developer.

70

5.2. Budget Considerations 5. Project Management and Planning

Project Tutor

Stage Description Time Cost

Tutoring
Tutoring and supervision of the

different project stages.
22h 814AC

Management
Management and arrangement

of meetings and project
milestones.

10h 370AC

Meetings On-line and physical meetings. 6h 222AC

Testing
sessions

Tests and demos run in the lab
and primary school.

11h 407AC

Total 49h 1813AC

Total 362h 8073AC

Table 5.2: Estimated personnel costs for the project tutor.

5.2.2 Software License Costs

All the software used for the development and the price for the respective licenses
is listed in table 5.3.

*The Windows 8 license was obtained for free thanks to the DreamSpark
program (https://www.dreamspark.com/) so it had no costs.

5.2.3 Equipment Costs

All the hardware and peripherals used for the development and tests are included
in this section (table 5.4). Note that some of the components are no longer
available or the prices might be different now from those at the purchase date
so some estimations were made.

71

https://www.dreamspark.com/

5.2. Budget Considerations 5. Project Management and Planning

Software Price

Unity3D Free 0AC

Adobe Photoshop (6
month license)[35]

14.99AC/month x 6

Blender 0AC

Visual Studio
Community 2013

0AC

TeXstudio 0AC
Windows 8 0AC*

GoldWave Free Edition
0AC

Total 89.94AC

Table 5.3: Software license costs.

72

5.2. Budget Considerations 5. Project Management and Planning

Component Cost Lifetime Usage time Chargeable cost

Development Computer

Intel i5-2500k CPU 189AC 7 years 3 months 6.75AC

Asus P8Z68-V LE
Motherboard

129AC 7 years 3 months 4.60AC

MSI GeForce GTX
970 GPU

389AC 5 years 3 months 19.45AC

Samsung 840 250Gb
SSD

180AC 7 years 3 months 6.43AC

Seagate Desktop
7200.14 2TB

72.95AC 7 years 3 months 2.60AC

Corsair VS650 650W
PSU

67AC 8 years 3 months 2.09AC

Corsair 600T Tower 160AC 10 years 3 months 4AC

Peripherals

x2 LG IPS234
Monitors

2x126AC 6 years 3 months 10.5AC

Steelseries Rival
Mouse

49.95AC 5 years 3 months 3.24AC

Logitech G110
Keyboard

64.95AC 5 years 3 months 2.49AC

Testing Laptop

MSI GS60 Ghost
415ES

1529AC 6 years 3 months 63.70AC

Project Peripherals

Oculus Rift DK1 (*) 266.42AC 4 years 3 months 16.6AC

Sony Xperia Z2 399AC 3 years 3 months 33.25AC

Kinect Sensor 69.99AC 5 years 3 months 3.49AC

Total 3818.26AC 179.28AC

Table 5.4: Estimated equipment costs.

73

5.2. Budget Considerations 5. Project Management and Planning

*The Oculus Rift DK1 model is no longer available for purchase so its original
selling price of $300 (approximately 266AC) was considered.

5.2.4 Total Cost Summary

A summary and the estimated total cost for the project is presented in table
5.5.

Concept Cost

Personnel 8073AC

Hardware 179.28AC

Licenses 1189.94AC

Total 9442.22AC

Table 5.5: Summary of the total project costs.

74

Chapter 6

Conclusions

In this chapter we make a review of the objectives we had set initially to check
whether or not we accomplished them. Additionally we present some conclusions
drawn from the development and tests.

6.1 Review of the Project Objectives

• Create a VR experience, in the form of a game, that is intense,
immersive and fun. As we could see during the testing sessions, most
users found the system realistic and immersive and practically all of them
expressed that they had fun using it.

• The game atmosphere, locations and characters have to be based
on the novel ”El Secreto de Marcos”[12]. We successfully man-
aged to reproduce some of the book’s locations and characters. We had
the author’s approval since the beginning, he tried the games and he in-
cluded the experience as a section of the book’s website: http://www.

elsecretodemarcos.com/realidad-virtual. In addition he wants to
be involved further in the activities we have planned for next July in a
hospital.

• Testing the game with final users and gathering their feedback,
reactions and opinions. We could successfully test the system in a
laboratory and a real world environment (10 university students for the
testing phase and over 20 children from second course of primary educa-
tion for the deployment). The experience we performed in the primary
school was only for a group of children, however the school requested us
to repeat the experience with more groups from first and second course
and with students from the ”Aula Arcoiris” which involves children with
autism spectrum disorder. In addition the parents collective whose chil-
dren took part of the experience have requested an extra session for parents
to participate as well.

• Develop at least one experience where the user controls the
avatar using his body. This objective was achieved since we could
develop two of these experiences: Pegasus Flight and Pegasus Ride.

75

http://www.elsecretodemarcos.com/realidad-virtual
http://www.elsecretodemarcos.com/realidad-virtual

6.2. Development and Test Conclusions 6. Conclusions

• Develop at least one experience where a physical object is used
to interact with the virtual world. This objective was successfully
accomplished as shown by the Sword Training game.

• Develop a system that is easy to setup. We were able to successfully
try the system with twenty children in around three hours, which in our
opinion is a reasonable amount of time, and with almost no technical issues
except for the amount of cables involved.

• Develop a system that is affordable. As shown in section 5.2, we
could finish the project with a reasonably low budget. However, if this
system was to be sold commercially, the required special hardware would
be a kinect sensor, which is indeed affordable and an Oculus Rift which
currently is not cheap but as explained in the next section (A.6), there
are alternative devices that will be available in the future and without
requiring cables to allow for increased mobility.

6.2 Development and Test Conclusions

• Development of Oculus Rift experiences in Unity. The used ver-
sion of Unity (4.6) did not support the Oculus Rift natively. This made
the development and debugging process more complex that it should be.
However during the development phase, Unity version 5.1.1 was released,
minimizing this problem.

• Creating a visually appealing game with very low budget. When
developing a videogame or a virtual experience, the visuals are usually
the most budget and time consuming part. However it has been shown
by general user feedback that we managed to create a visually acceptable
experience with minimum time consumption and near to zero cost. This
was possible thanks to the multiple on-line asset stores that provide this
content for free and the custom modifications made. See section 3.4.

• Real world tests are very valuable. From this experience we can
conclude that testing with final users always provides new and valuable
information and brings to light issues that otherwise could be unseen.

6.3 Personal Conclusions

• Being able to complete a project of this size from star to finish provided
a high amount of valuable experience.

• Testing the system in a real world environment, seeing that it has a real
application and receiving real feedback was very rewarding.

• It would be a very interesting experience to take part in a full, bigger scale
project of this kind.

76

Chapter 7

Future Development

Although the project achieved its technical goals, there are plenty of areas that
could be improved or extended or even new scenarios where it could be used.
In this section we mention some of them.

Smartphone Controls

• Currently the system supports only one smartphone as input, however it
would be possible to support a higher number by, for example, modify-
ing the Bluetooth Proxy Application so that it accepts more bluetooth
connections and forwards them to different UDP ports. This could have
numerous uses such as tracking of both hands or different parts of the
body where a smartphone can be attached, similar to what the Sixense
STEM system does with its additional sensor modules (see section 2.1.2).

• Extending the capabilities of the BT IMU application so that it can send
data of pressed buttons or touchscreen input.

• Adding vibration and sound for haptic and aural feedback in the device.

Porting the Game to the New Unity version
With the announcement and release of Unity version 5.1.1 the integration with
virtual reality devices is much easier since it is supported natively, not only for
the Oculus Rift but also for Samsung GearVR and Microsoft HoloLens.

Porting this project to the new unity version would allow taking profit of all
the new features and make future developments easier.

Seamless Bluetooth Integration with Unity
Running the external Bluetooth Proxy application every time before starting
the game is not an optimal solution, especially for a final user. Two possible
ways to address this issue could be:

• Creating a bluetooth plugin with C++ and the Pro version of Unity [28].

• Using an external application like the currently solution but making it run
in the background as a service.

77

7. Future Development

Reduce Keyboard Dependency
At the current stage, the user has to press a button to start playing. While
this is not an important problem, it can be solved by using a user interface
completely adapted to VR which implements look-based input (i.e., keep looking
at a certain interface element to interact with it).

Therapeutic Purposes

The game was presented in the congress ”I Jornadas Internacionales de
Actualización, Evidencia y Accesibilidad en Silla de Ruedas” which took place
at Universidad Rey Juan Carlos de Madrid and it was very well received by
therapists for its potential uses as a therapy tool. Currently we are assessing
the possibility of trying the system with children which due to a disease must
stay in a hospital.

78

Appendix A

Extended Abstract

This annex provides an extended overview of the relevant ideas and sections
presented throughout the full document.

A.1 Introduction and Project History

Since its early beginnings, Virtual Reality (VR) has been a technology with
an enormous potential due to its inherent three-dimensional structure, both in
terms of display and interaction. According to Briston [Brison, 1995], the vision
of a three-dimensional environment applied to three-dimensional tasks and of
highly intuitive interfaces which make the computer hardware ”invisible” seems
to be an entirely reasonable and desirable vision.

However, the adoption of VR has been neither as fast nor as extensive as
expected at the beginning. There could be a variety of reasons for this failure,
but one of the most important was that the available interface hardware (Head-
mounted Display (HMD), trackers, etc.) during the first decades failed to deliver
the effects of immersion or presence required for many tasks mainly due to
performance issues.

Recent advances in stereoscopic displays such as VR glasses (e.g: Oculus
Rift, Samsung Gear) and other consumer devices available on the mass market
such as hand-held terminals (smartphones, tablets), and game platforms (Wii,
PlayStation) makes the technology of sensors and trackers much more affordable
for the users. This fact has allowed virtual reality to emerge from the simula-
tion field to a wider range of different applications such as manufacturing [2],
neuropsychology [3] ,rehabilitation [4], [5] and for leisure (games, films) [6].

Additionally, the relationships between body, mind and emotions have been
widely exploited in high level sports and dance performance, but its penetration
in academic environments is still very slow [7]. The theory of multiple intelli-
gences by Gardner [8], the growing interest in embodied cognition [9] and studies
supporting the connection between motor activity and brain neuroplasticity [4],
[10] have once again drawn attention to the potential of body-mind-emotions
connections in learning environments.

Taking advantage of these two tendencies and the fact that several authors
have highlighted the potential of VR to provide a multi-sensory learning feed-
back, the main objective of this project is to assess the integration possibilities

79

A.2. Summary of the Project Objectives A. Extended Abstract

of the current commercial devices and develop a prototype that consists of a set
of simple games, which involve physical activity and explore different ways of
interaction with the virtual world. Finally it would be necessary to tests these
games in a primary school with children in order to explore their reactions and
impressions.

Presenting the idea of this activity in a school before starting the actual
development allowed to redefine the initial objectives for a better integration
of the games within the activities carried out there as well as a more practical
application.

A.2 Summary of the Project Objectives

After all the initial modifications and definitions, we set the following objectives:

A.2.1 Functional Objectives

• Create a VR experience, in the form of a game, that is intense, immersive
and fun.

• The game atmosphere, locations and characters have to be based on the
novel ”El Secreto de Marcos”[12].

• Testing the game with final users and gathering their feedback, reactions
and opinions.

A.2.2 Technical Objectives

• Develop at least one experience where the user controls the avatar using
his body.

• Develop at least one experience where a physical object is used to interact
with the virtual world.

• Develop a system that is easy to setup.

• Develop a system that is affordable.

A.3 State of the Art and Implementation Pro-
cess

We analyzed the most widely used sensor technologies as well as alternatives of
commercial tracking devices. Most of them were quickly discarded due to either
complexity or high price. However after this analysis we still needed to perform
tests with some of the devices we had available before making the choice.

Finally the preferred choice was a combined solution consisting of a Kinect
sensor and taking advantage of the capabilities of current smartphones as an
Inertial Measurement Unit (IMU).

This setup required us to develop a system to send the smartphone sensor data

80

A.4. Conclusions A. Extended Abstract

to the computer so we chose bluetooth for this purpose and created both an
Android and a Windows application that could successfully communicate using
this technology.

Once this system was ready we started integrating it inside Unity 3D and did
the same for Kinect and the Oculus Rift.

The next step was to develop the actual games in Unity and gathering and
adapting the different art assets (models, animations, textures, sound effects...)
that made part of the system.

Finally adjustments were made by trial and error to adjust the difficulty and
controls.

A.4 Conclusions

A.4.1 Development and Test Conclusions

In this section a brief summary of the relevant conclusions drawn is presented.
Additionally a summarized validation of the project objectives and their final
degree of accomplishment is shown.

A.4.2 Validation of the Project Objectives

• Create a VR experience, in the form of a game, which produces a sense
of embodiment being intense, immersive and fun. Successfully accom-
plished.

• The game atmosphere, locations and characters have to be based on the
novel ”El Secreto de Marcos”[12]. Successfully accomplished.

• Testing the game with final users and gathering their feedback, reactions
and opinions. Successfully accomplished.

• Develop at least one experience where the user controls the avatar using
his body. Successfully accomplished.

• Develop at least one experience where a physical object is used to interact
with the virtual world. Successfully accomplished.

• Develop a system that is easy to setup. Accomplished but improvable.

• Develop a system that is affordable. Accomplished but improvable.

A.4.3 Technical Conclusions

Despite of the fact that most of the technologies used are not new, the integra-
tion of all of them was not a trivial process and it is still experimental. However
this situation will be improved as the VR systems consolidate making future
developments easier.

Another important point we realized is that currently one can create a visually

81

A.5. Personal Conclusions A. Extended Abstract

appealing game or simulation, with a very low budget, by using free resources
that are available on-line specially on the Unity Asset Store.

Finally we could check first hand how valuable the testing phase with final
users is.

A.5 Personal Conclusions

• Being able to complete a project of this size from star to finish provided
a high amount of valuable experience.

• Testing the system in a real world environment, seeing that it has a real
application and receiving real feedback was very rewarding.

• It would be a very interesting experience to take part in a full, bigger scale
project of this kind.

A.6 Future Development

Although the project achieved its technical goals, there are plenty of areas that
could be improved or extended or even new scenarios where it could be used.
In this section we mention some of them.

Smartphone Controls

• Currently the system supports only one smartphone as input, however it
would be possible to support a higher number by, for example, modify-
ing the Bluetooth Proxy Application so that it accepts more bluetooth
connections and forwards them to different UDP ports. This could have
numerous uses such as tracking of both hands or different parts of the
body where a smartphone can be attached, similar to what the Sixense
STEM system does with its additional sensor modules (see section 2.1.2).

• Extending the capabilities of the BT IMU application so that it can send
data of pressed buttons or touchscreen input.

• Adding vibration and sound for haptic and aural feedback in the device.

Porting the Game to the New Unity version
With the announcement and release of Unity version 5.1.1 the integration with
virtual reality devices is much easier since it is supported natively, not only for
the Oculus Rift but also for Samsung GearVR and Microsoft HoloLens.

Porting this project to the new unity version would allow taking profit of all
the new features and make future developments easier.

Seamless Bluetooth Integration with Unity
Running the external Bluetooth Proxy application every time before starting
the game is not an optimal solution, especially for a final user. Two possible
ways to address this issue could be:

82

A.6. Future Development A. Extended Abstract

• Creating a bluetooth plugin with C++ and the Pro version of Unity [28].

• Using an external application like the currently solution but making it run
in the background as a service.

Reduce Keyboard Dependency
At the current stage, the user has to press a button to start playing. While
this is not an important problem, it can be solved by using a user interface
completely adapted to VR which implements look-based input (i.e., keep looking
at a certain interface element to interact with it).

Therapeutic Purposes

The game was presented in the congress ”I Jornadas Internacionales de
Actualización, Evidencia y Accesibilidad en Silla de Ruedas” which took place
at Universidad Rey Juan Carlos de Madrid and it was very well received by
therapists for its potential uses as a therapy tool. Currently we are assessing
the possibility of trying the system with children which due to a disease must
stay in a hospital.

83

A.6. Future Development A. Extended Abstract

84

Appendix B

User Manual

B.1 System Requirements

The minimum system requirements to run a Unity3D game are the following[36]:

• OS: Windows XP+

• Graphics card: DX9 (shader model 2.0) capabilities.

• CPU: SSE2 instruction set support.

However, for VR experiences, playing at 60 frames per second is a must. For
that reason we provide the following recommended system specifications that
should achieve such frame rate:

• CPU: Intel Core 2 Quad CPU Q6600 @ 2.40GHz / AMD Phenom 9850
Quad-Core Processor @ 2.5GHz

• System Memory: 4 GB

• OS: Windows 7 32/64 bit Service Pack 1

• Video Card: NVIDIA GeForce 8800 GT 1GB / AMD Radeon HD 4870
1GB

• Bluetooth 2.0 Adapter (required only for the Sword Training game)

• Free Disk Space: 128MB

B.1.1 Third Party Software

• Microsoft Kinect Runtime (version 1.8):
https://www.microsoft.com/en-us/download/details.aspx?id=40277

• Oculus Rift Runtime (version 0.4.4):
https://developer.oculus.com/downloads/pc/0.4.4-beta/Oculus_Runtime_

for_Windows/

85

https://www.microsoft.com/en-us/download/details.aspx?id=40277
https://developer.oculus.com/downloads/pc/0.4.4-beta/Oculus_Runtime_for_Windows/
https://developer.oculus.com/downloads/pc/0.4.4-beta/Oculus_Runtime_for_Windows/

B.2. First Time Configuration B. User Manual

B.2 First Time Configuration

All the steps described in this section are only required if this is the first time
using the game or you are going to use a new Android phone as a controller.

B.2.1 Android Application Installation

NOTE: BT IMU application requires Android version 4.3 or later.
Once the bt imu.apk file has been copied to the phone, open it with your

preferred Android file browser and follow the typical procedure to install an
Android application. You might need to allow installation of applications from
unknown sources. See figure B.1.

Figure B.1: How to allow installation from unknown sources.
Image from www.axiamo.com

B.2.2 Computer and Phone Bluetooth Pairing

In order to establish a bluetooth connection between two devices the must be
paired first. Here we show the procedure for the case of Android 5.0.2 and
Windows 8 however this procedure is similar across other operative systems
and devices.

86

www.axiamo.com

B.2. First Time Configuration B. User Manual

1. Navigate to Settings - Bluetooth and turn on bluetooth.

2. The phone will automatically scan for nearby devices and will show them
on a list. Select your computer from that list.

3. A window will open on showing a pin code, but do not click on ”Pair” yet.
(fig. B.2)

Figure B.2: Android pin confirmation.

4. A notification will pop up on your Windows computer asking for permis-
sion to allow your phone to connect. Click on it to accept. (fig. B.3)

Figure B.3: Windows 8 connection request.

5. You will now see in your computer a screen with the same pin code that
showed up on your phone. Click on ”Yes”. (fig. B.4)

Figure B.4: Windows 8 pin confirmation.

6. Now you can go back to your phone and click on the ”Pair” button.

87

B.3. Playing the Games B. User Manual

7. After a few seconds your phone and computer will be paired and ready to
use the connection.

From now on every time bluetooth is enabled on both devices and they are
in range they will automatically get paired.

B.2.3 Game Installation

Once a copy of the game has been obtained and the third party software has
been installed it is enough with extracting all the game files to the desired
directory as shown in figure B.5.

Figure B.5: Once extracted, the game directory should look like this.

B.3 Playing the Games

First run the BluetoothProxy.exe application (it should be running while you
play the game to use the smartphone as a controller) and then start the BT
IMU application in your smartphone. You will see your computer on the list of
paired devices inside the application, so select it. Once you do so the phone will
start sending data to the computer as it will be shown in the Bluetooth Proxy
application ().

Now run the game executable (Game DirectToRift.exe or Game.exe depend-
ing on how your Oculus Rift display mode is configured [37]) and the game will
start.

B.3.1 General Controls

These key bindings apply to the three games:

• Keyboard R: Reset the virtual camera orientation.

• Keyboard 1: Load Sword Training game.

• Keyboard 2: Load Pegasus Flight game.

• Keyboard 3: Load Pegasus Ride game.

88

B.3. Playing the Games B. User Manual

Figure B.6: Sword Training calibration screen.

B.3.2 Sword Training Controls

At the calibration screen (figure B.6):

• Keyboard R: Reset sword* and camera orientation.

• Phone movement: Control the sword.

• Keyboard F3: Start the game as a left handed player.

• Keyboard F4: Start the game as a right handed player.

*For the calibration of the sword and phone orientation simply leave the phone
on a flat surface such that it points towards the kinect’s sensor plane. See figure
(B.7).

In game:

• Keyboard R: Reset sword and camera orientation.

• Phone movement: Control the sword.

• Keyboard 1: Restart the game.

B.3.3 Pegasus Flight Controls

At the calibration screen (figure B.8):

• Keyboard R: Reset camera orientation.

• Keyboard F3: Start the game.

In game:

89

B.3. Playing the Games B. User Manual

Figure B.7: How to calibrate the smartphone orientation for the Sword Training
game. Place it on a flat surface pointing perpendicularly to the Kinect sensor’s
plane.

Figure B.8: Pegasus Flight calibration screen.

• Keyboard R: Reset camera orientation.

• Keyboard Tab: Reset the player position to the last passed way point.

• Arms movement: Control the Pegasus speed and vertical lift force. If
you move your arms in such a way that your hands go higher than your
shoulders the Pegasus will get an impulse proportional to the amplitude of
this movement. If you keep your arms extended you will glide, otherwise
if you get your arms close to your body the gravity will make you start
falling.

• Head movement: Controls the Pegasus direction of movement such

90

B.3. Playing the Games B. User Manual

that it will move towards the direction you are looking.

• Keyboard 2: Restart the game.

B.3.4 Pegasus Ride Controls

At the calibration screen:

Figure B.9: Pegasus Ride calibration screen.

• Keyboard R: Reset camera orientation.

• Keyboard F3: Start the game.

In game:

• Keyboard R: Reset camera orientation.

• Keyboard Tab: Reset the player position to the last passed way point.

• Hands movement: Control the Pegasus speed such that if you move
your hands up and down close to each other the Pegasus will gain speed
proportionally to the amplitude of the movement.

• Torso and shoulders movement: Controls the Pegasus direction of
movement.

• Keyboard 3: Restart the game.

91

B.3. Playing the Games B. User Manual

92

Appendix C

Developer Manual

This part of the manual explains how to tweak some of the game parameters
to modify the player experience as well as how to create new levels. Of course
more features can be modified or added at source code level, however describing
that process is out of the scope of this manual.

C.1 System and Software Requirements

Apart from Unity Editor no other software is required to modify the game as
described in this manual. The standard system requirements to install Unity
Editor are [36]:

• OS: Windows XP SP2, 7 SP1, 8; Mac OS X 10.8+. Windows Vista is not
supported; and server versions of Windows and OS X are not tested.

• GPU: Graphics card with DX9 (shader model 2.0) capabilities. Anything
made since 2004 should work.

The Unity Editor version recommended is 4.6.3f1 since it is the one used
during development.

C.2 Modifying the Sword Training Game

C.2.1 Adjusting the Cannon Parameters

By adjusting the cannon parameters one can greatly affect the difficulty of the
game. These adjustments are made via the CannonController script. You will
find this script inside the Cannon GameObject hierarchy (see figure C.1 at the
top right). Here is a list of what can be tweaked:

• Shoot Rate: Time in seconds between shots. The smaller the value the
faster the cannon will shoot.

• Power: The force that the cannon will apply to the projectiles. The
higher the value the faster and further away the watermelons will go.

• X Margin: Amount of random deviation for the projectiles in the hori-
zontal axis.

93

C.2. Modifying the Sword Training Game C. Developer Manual

• Y Margin: Amount of random deviation for the projectiles in the vertical
axis.

Additionally the cannon inclination can be modified to increase or decrease the
falling time of the watermelons which will in turn affect the difficulty.

Figure C.1: Left: The cannon GameObject. Top right: Cannon hierarchy.
Bottom right: Exposed CannonController parameters.

C.2.2 Adjusting General Parameters

The GameManager GameObject has a SwordGameManager script attached
that controls the global game logic and score calculations. The relevant param-
eters that can be modified are:

• Melons To Cut: The goal number of watermelons that the player has
to cut to complete the game.

• Gold Rate: The minimum accuracy (melons cut to melons shoot ratio)
to obtain a gold medal.

• Silver Rate: The minimum accuracy to obtain a silver medal. Any
accuracy ratio lower than this value will be awarded a bronze medal.

Figure C.2: SwordGameManager exposed parameters.

94

C.3. Modifying Pegasus Flight and Ride Games C. Developer Manual

C.3 Modifying Pegasus Flight and Ride Games

Due to the similarity in the scene setup between this two games the possible
modifications are the same.

C.3.1 Modifying or Creating a New Circuit

The circuit is formed by the linked way points that have to be traversed in
order. During the development some simple editor scripts were written in order
to make the circuit editing process easier.

You can:

• Modify the existing circuit by moving the way points (located inside the
WAYPOINTS GameObject).

• Add new way points via the menu option (see figure) or by pressing the
shortcut ”Ctrl G”. If you have a way point selected at the moment of
adding a new one it will be automatically linked to the old one. This way
you can extend the circuit as you like.

• Create a new circuit. To do so just start adding new way points as ex-
plained above and set the starting way point by checking its Is First field
(see figure C.3 at the bottom). This will be indicated with a white sphere.
Any way point that does not have a Next Waypoint is considered the
goal. You can also delete the old way points completely.

Figure C.3: Way point menu at the top and way point parameters at the bottom.

To make sure that the circuit is set up correctly, check that all the way points
are linked by a white line in the scene window (see figure C.4). If this is not the
case you can fix the problem by manually setting the Next Waypoint field of
the broken way point in the editor (see figure C.3).

95

C.3. Modifying Pegasus Flight and Ride Games C. Developer Manual

Figure C.4: Possible way point connection issues.

C.3.2 Adjusting General Parameters

Similarly to Sword Training, in these two games you can also adjust the game
rewards by changing the values in the FlightGameManager script attached to
the GameManager object (figure C.5):

• Time Gold: Minimum time in seconds to achieve a gold medal.

• Time Silver: Minimum time in seconds to achieve a silver medal. Any
time greater than this value will be awarded a bronze medal.

Figure C.5: Exposed parameters for the FlightGameManager script.

96

Appendix D

Image rights agreement
document

97

AUTORIZACIÓN- CESIÓN GRATUITA DERECHOS DE IMAGEN Y DATOS ENTREVISTAS

D. .., mayor de edad, con plena

capacidad de obrar, con D.N.I.........................., y domicilio en

.., actuando en nombre y representación de su hijo/a

D/ña. ..

AUTORIZA a la Universidad Carlos III de Madrid (UC3M), entidad sin ánimo de lucro, a realizar

un reportaje audiovisual incluyendo encuestas y entrevistas sobre la actividad SIMULADORES

IT (PhyMEL) en el que aparezca una imagen de la persona de su hijo/a, o su persona. El

reportaje podrá ser divulgado en cualquier medio (TV, prensa, internet, CD, DVD, Tecnología

móvil, nuevas redes de distribución, material promocional, revistas y congresos científicos, etc.)

en cumplimiento de sus finalidades de investigación, formación, divulgación, exposición,

promoción, y/o publicidad. Esta cesión se hace por el plazo máximo que permite la legislación

vigente para todo el mundo, con posibilidad de ceder a terceros. La obra podrá ser fraccionada

o modificada respecto a la información capturada para la elaboración de nuevos materiales.

La presente autorización es completamente gratuita, y me comprometo a no reclamar ninguna

compensación y/o pago, y/o reembolso, y/o indemnización a cambio del permiso acordado con

la Universidad Carlos III de Madrid para la utilización de mi imagen.

Los datos en poder de la Universidad Carlos III de Madrid, serán custodiados de conformidad

con lo dispuesto en la Ley Orgánica de Protección de Datos de Carácter Personal.

Madrid, a ….. de ………………… de …………..

D.

NOTA: En la actividad se hará uso de gafas de realidad virtual. No está recomendado su uso

en caso de que el participante tenga algún problema de epilepsia.

Acronyms

API Application Programming Interface. 23, 25

CC0 Creative Commons Zero. 22

EULA End User License Agreement. 22

HMD Head-mounted Display. 1, 79

IDE Integrated Development Environment. 24, 25

IMU Inertial Measurement Unit. 8, 15, 26, 27, 80

SDK Software Development Kit. 26, 27

TLT IEEE Transactions on Learning Technologies. 66

VR Virtual Reality. 1–3, 5, 7, 26, 34, 66, 75, 78–81, 83, 85

99

Acronyms Acronyms

100

Bibliography

[1] S. Bryson, “Approaches to the successful design and implementation of vr
applications,” Virtual reality applications, pp. 3–15, 1995.

[2] S. K. Ong and A. Y. C. Nee, Virtual and augmented reality applications in
manufacturing. Springer Science & Business Media, 2013.

[3] A. A. Rizzo, M. Schultheis, K. A. Kerns, and C. Mateer, “Analysis of as-
sets for virtual reality applications in neuropsychology,” Neuropsychological
Rehabilitation, vol. 14, no. 1-2, pp. 207–239, 2004.

[4] B. Peñasco-Mart́ın, A. De los Reyes-Guzmán, Á. Gil-Agudo, A. Bernal-
Sahún, B. Pérez-Aguilar, and A. I. De la Peña González, “Aplicación de
la realidad virtual en los aspectos motores de la neurorrehabilitación,” Rev
Neurol, vol. 51, no. 481, p. 8, 2010.

[5] C. F. Panadero, V. de la Cruz Barquero, C. D. Kloos, and D. M. Núñez,
“Phymel-ws: Physically experiencing the virtual world. insights into mixed
reality and flow state on board a wheelchair simulator,” Journal of Univer-
sal Computer Science, vol. 20, no. 12, pp. 1629–1648, 2014.

[6] D. Jonathan, F. Eduardo, and L. Rodrigo, “Tecnoloǵıas de interacción
avanzadas aplicadas a videojuegos,” Blucher Design Proceedings, vol. 1,
no. 8, pp. 149–152, 2014.

[7] C. Fernández-Panadero and C. D. Kloos, “Phymel. a framework to inte-
grate physical, mental and emotional learning in meaningfull experiences
and multidimensional reports,” London, 28-29 November 2013 King?s Col-
lege London, UK, p. 203, 2013.

[8] H. Gardner, Multiple Intelligences: New Horizons. BasicBooks, 2006.

[9] Y. Hao-Sheng, “Embodied cognition: A new approach in cognitive psychol-
ogy [j],” Advances in Psychological Science, vol. 5, p. 001, 2010.

[10] M. A. Dimyan and L. G. Cohen, “Neuroplasticity in the context of motor
rehabilitation after stroke,” Nature Reviews Neurology, vol. 7, no. 2, pp. 76–
85, 2011.

[11] “Real decreto-ley 89/2014, de 24 de julio, por el que se establece para la
comunidad de madrid el curŕıculo de la educación primaria..”

[12] R. N. Ŕıo, El secreto de Marcos. Uno Editorial, 2014.

101

Bibliography Bibliography

[13] M.-L. Ryan, Narrative as virtual reality: Immersion and interactivity in
literature and electronic media. Johns Hopkins University Press, 2001.

[14] M. B. Ibáñez, D. Morillo, P. Santos, D. Perez Calle, J. J. Garćıa Rueda,
D. Hernández-Leo, and C. Delgado Kloos, “Computer assisted assessment
within 3d virtual worlds,” 2011.

[15] I. OCULUS VR, Best Practices Guide. [Online; accessed 20-June-2015].

[16] I. Sixense Entertainment, “Sixense stem key components - stem base.”
http://sixense.com/wireless. [Online; accessed 20-June-2015].

[17] M. Livingston, J. Sebastian, Z. Ai, J. W. Decker, et al., “Performance
measurements for the microsoft kinect skeleton,” in Virtual Reality Short
Papers and Posters (VRW), 2012 IEEE, pp. 119–120, IEEE, 2012.

[18] Sixense, “Evolution of sixense technology: From hydra to stem system.”
https://www.youtube.com/watch?v=gC2pMfoyEiA. [Online; accessed 20-
June-2015].

[19] “Asset Store.” https://www.assetstore.unity3d.com/en/. [Online; ac-
cessed 20-June-2015].

[20] “Open game art.” http://opengameart.org/. [Online; accessed 20-June-
2015].

[21] “Public domain dedication.” https://creativecommons.org/

publicdomain/zero/1.0/. [Online; accessed 20-June-2015].

[22] I. OCULUS VR, “Unity 4 integration.” http://static.oculus.com/sdk-

downloads/ovr_unity_0.4.4_lib.zip. [Online; accessed 20-June-2015].

[23] R. Solutions, “Kinect with ms-sdk unity pack-
age.” https://www.assetstore.unity3d.com/en/?gclid=

CjwKEAjw7YWrBRCThIyogcGymQsSJAAmz_nd6eCbYHmOVGBkNp_

IJSEtys8PEfJhhZSdHXBr03ZSUhoCabjw_wcB#!/content/7747. [On-
line; accessed 20-June-2015].

[24] Google, “Andoid api - sensorevent.” http://developer.android.com/

reference/android/hardware/SensorEvent.html. [Online; accessed 20-
June-2015].

[25] J. Zwiener, “Wireless imu.” https://play.google.com/store/apps/

details?id=org.zwiener.wimu. [Online; accessed 20-June-2015].

[26] I. T. H. Ltd, “32feet.net.” http://32feet.codeplex.com/. [Online; ac-
cessed 20-June-2015].

[27] “Mono project.” http://www.mono-project.com/. [Online; accessed 20-
June-2015].

[28] “Bluetooth support on win and osx.” http://answers.unity3d.com/

questions/858073/bluetooth-support-on-win-and-osx.html. [On-
line; accessed 20-June-2015].

102

http://sixense.com/wireless
https://www.youtube.com/watch?v=gC2pMfoyEiA
https://www.assetstore.unity3d.com/en/
http://opengameart.org/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://static.oculus.com/sdk-downloads/ovr_unity_0.4.4_lib.zip
http://static.oculus.com/sdk-downloads/ovr_unity_0.4.4_lib.zip
https://www.assetstore.unity3d.com/en/?gclid=CjwKEAjw7YWrBRCThIyogcGymQsSJAAmz_nd6eCbYHmOVGBkNp_IJSEtys8PEfJhhZSdHXBr03ZSUhoCabjw_wcB#!/content/7747
https://www.assetstore.unity3d.com/en/?gclid=CjwKEAjw7YWrBRCThIyogcGymQsSJAAmz_nd6eCbYHmOVGBkNp_IJSEtys8PEfJhhZSdHXBr03ZSUhoCabjw_wcB#!/content/7747
https://www.assetstore.unity3d.com/en/?gclid=CjwKEAjw7YWrBRCThIyogcGymQsSJAAmz_nd6eCbYHmOVGBkNp_IJSEtys8PEfJhhZSdHXBr03ZSUhoCabjw_wcB#!/content/7747
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
https://play.google.com/store/apps/details?id=org.zwiener.wimu
https://play.google.com/store/apps/details?id=org.zwiener.wimu
http://32feet.codeplex.com/
http://www.mono-project.com/
http://answers.unity3d.com/questions/858073/bluetooth-support-on-win-and-osx.html
http://answers.unity3d.com/questions/858073/bluetooth-support-on-win-and-osx.html

Bibliography Bibliography

[29] W. Sherman and A. Craig, Understanding Virtual Reality: Interface, Appli-
cation, and Design. The Morgan Kaufmann Series in Computer Graphics,
Elsevier Science, 2002.

[30] M. Talbot, “Finite state machines in unity.” https://www.youtube.com/

watch?v=l0XY7zwag_g. [Online; accessed 20-June-2015].

[31] S. LaValle, “Sensor fusion: Keeping it simple,” [Online; accessed 20-June-
2015].

[32] J.-K. Nielsen, “Meshbuilder.cs.” http://tothemathmos.com/files/

MeshBuilder.cs. [Online; accessed 20-June-2015].

[33] G. Fabian and L. Gergó, “Fast algorithm to split and reconstruct triangular
meshes,” [Online; accessed 20-June-2015].

[34] P. Lawitzki, “Android sensor fusion tutorial.” http://www.codeproject.

com/Articles/729759/Android-Sensor-Fusion-Tutorial. [Online; ac-
cessed 20-June-2015].

[35] “Precios y Planes de Abono a Creative Cloud.” https://creative.adobe.

com/es/plans?single_app=photoshop&store_code=es, 2015. [Online;
accessed 20-June-2015].

[36] “Unity system requirements.” https://unity3d.com/unity/system-

requirements. [Online; accessed 20-June-2015].

[37] “Oculus rift display modes.” http://www.glfw.org/docs/latest/rift.

html#rift_direct. [Online; accessed 20-June-2015].

103

https://www.youtube.com/watch?v=l0XY7zwag_g
https://www.youtube.com/watch?v=l0XY7zwag_g
http://tothemathmos.com/files/MeshBuilder.cs
http://tothemathmos.com/files/MeshBuilder.cs
http://www.codeproject.com/Articles/729759/Android-Sensor-Fusion-Tutorial
http://www.codeproject.com/Articles/729759/Android-Sensor-Fusion-Tutorial
https://creative.adobe.com/es/plans?single_app=photoshop&store_code=es
https://creative.adobe.com/es/plans?single_app=photoshop&store_code=es
https://unity3d.com/unity/system-requirements
https://unity3d.com/unity/system-requirements
http://www.glfw.org/docs/latest/rift.html#rift_direct
http://www.glfw.org/docs/latest/rift.html#rift_direct

	Acknowledgments
	Abstract
	Introduction
	Project History
	Project Motivation
	Project Objectives
	Functional Objectives
	Technical Objectives

	Document Structure

	Problem Analysis and Alternatives
	State of the Art
	Sensor Technologies
	Overview of Commercial Devices

	State of the Art Conclusions
	System Requirements
	Functional Requirements
	Non-functional Requirements
	Objectives vs. Requirements

	Legal and Regulation Aspects
	Tools and Technologies Used
	Software
	Hardware

	Design and Implementation
	System Architecture and Specifications
	Bluetooth Subsystem Development
	Development of the Bluetooth Client Application
	Development of the Bluetooth Proxy Application

	Game Development
	Sword Training
	Pegasus Flight
	Pegasus Ride

	Summary of Art Assets
	Environment
	Characters

	Results and Evaluation
	Development Tests
	Development Validation
	Final Validation

	Project Management and Planning
	Project Time Plan
	Budget Considerations
	Staff Costs
	Software License Costs
	Equipment Costs
	Total Cost Summary

	Conclusions
	Review of the Project Objectives
	Development and Test Conclusions
	Personal Conclusions

	Future Development
	Extended Abstract
	Introduction and Project History
	Summary of the Project Objectives
	Functional Objectives
	Technical Objectives

	State of the Art and Implementation Process
	Conclusions
	Development and Test Conclusions
	Validation of the Project Objectives
	Technical Conclusions

	Personal Conclusions
	Future Development

	User Manual
	System Requirements
	Third Party Software

	First Time Configuration
	Android Application Installation
	Computer and Phone Bluetooth Pairing
	Game Installation

	Playing the Games
	General Controls
	Sword Training Controls
	Pegasus Flight Controls
	Pegasus Ride Controls

	Developer Manual
	System and Software Requirements
	Modifying the Sword Training Game
	Adjusting the Cannon Parameters
	Adjusting General Parameters

	Modifying Pegasus Flight and Ride Games
	Modifying or Creating a New Circuit
	Adjusting General Parameters

	Image rights agreement document
	Acronyms
	Bibliography

